Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/1694
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Perry, Gilbert J. | - |
dc.contributor.author | Myers, Jerry G. | - |
dc.contributor.author | Anayiotos, Andreas | - |
dc.contributor.other | Αναγιωτός, Ανδρέας | - |
dc.date.accessioned | 2013-03-04T14:14:51Z | en |
dc.date.accessioned | 2013-05-17T05:22:18Z | - |
dc.date.accessioned | 2015-12-02T09:59:37Z | - |
dc.date.available | 2013-03-04T14:14:51Z | en |
dc.date.available | 2013-05-17T05:22:18Z | - |
dc.date.available | 2015-12-02T09:59:37Z | - |
dc.date.issued | 1995 | - |
dc.identifier.citation | Ultrasound in Medicine and Biology, 1995, vol. 21, no. 4, pp. 501-516 | en_US |
dc.identifier.issn | 03015629 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/1694 | - |
dc.description.abstract | ttempts to quantify valvular regurgitation have recently been focused on the proximal orifice flow field. A complete description of the proximal orifice flow field is provided in this investigation. A steady state in vitro model accessible by both color Doppler ultrasound (CDU) and laser Doppler velocimetry (LDV) was utilized. Velocities for varying flow rates and orifices were calculated by finite element modeling (FEM), by LDV and by CDU. The steady flow model was composed of circular orifices of 3, 5 and 10 mm diameters at flow rates from 0.7 to 10 L/min. Regurgitant flow rates were calculated from the proximal CDU data by two separate methods. The first approach utilized angle corrected velocities while the second approach utilized only velocities which did not require angle correction (centerline velocities). Both methods correlated well with known flow rates (y = 0.97x - 0.09, r = 0.98, SEE = 0.45, p < 0.0001; and y = 1.0x + 0.07, r = 0.99, SEE = 0.27, p < 0.0001, respectively) and were superior to results obtained by assuming a hemispherical geometry as is done in the aliasing technique. The methodology provides a complete analysis of the proximal flow field and involves fewer geometric assumptions than the aliasing approach. This may prove to be an advantage when analyzing in vivo flow fields with complex, uncertain geometry. Attempts to quantify valvular regurgitation have recently been focused on the proximal orifice flow field. This paper provides a complete description of this proximal orifice flow field. A steady state in vitro model accessible by both color Doppler ultrasound (CDU) and laser Doppler velocimetry (LDV) was utilized. Velocities for varying flow rates and orifices were calculated by finite element modeling (FEM), by LDV and by CDU. | en_US |
dc.format | en_US | |
dc.language.iso | en | en_US |
dc.relation.ispartof | Ultrasound in Medicine and Biology | en_US |
dc.rights | © Elsevier | en_US |
dc.subject | Echocardiography | en_US |
dc.subject | Ultrasonic imaging | en_US |
dc.subject | Hemodynamics | en_US |
dc.subject | Computer simulation | en_US |
dc.subject | Blood flow Measurement | en_US |
dc.title | A numerical and experimental investigation of the flow acceleration region proximal to an orifice | en_US |
dc.type | Article | en_US |
dc.affiliation | University of Alabama at Birmingham | en |
dc.collaboration | University of Alabama at Birmingham | en_US |
dc.collaboration | Birmingham Veteran's Administration Medical Center | en_US |
dc.journals | Subscription | en_US |
dc.country | United Kingdom | en_US |
dc.subject.field | Medical and Health Sciences | en_US |
dc.publication | Peer Reviewed | en_US |
dc.identifier.doi | 10.1016/0301-5629(94)00141-Y | en_US |
dc.dept.handle | 123456789/54 | en |
dc.relation.issue | 4 | en_US |
dc.relation.volume | 21 | en_US |
cut.common.academicyear | 1995-1996 | en_US |
dc.identifier.spage | 501 | en_US |
dc.identifier.epage | 516 | en_US |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.cerifentitytype | Publications | - |
item.openairetype | article | - |
crisitem.journal.journalissn | 0301-5629 | - |
crisitem.journal.publisher | Elsevier | - |
crisitem.author.dept | Department of Mechanical Engineering and Materials Science and Engineering | - |
crisitem.author.faculty | Faculty of Engineering and Technology | - |
crisitem.author.orcid | 0000-0003-4471-7604 | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
Appears in Collections: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
29
checked on Nov 9, 2023
WEB OF SCIENCETM
Citations
50
22
Last Week
0
0
Last month
0
0
checked on Oct 29, 2023
Page view(s)
532
Last Week
0
0
Last month
30
30
checked on Mar 13, 2025
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.