Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/1632
Τίτλος: | A fuzzy c-means-type algorithm for clustering of data with mixed numeric and categorical attributes employing a probabilistic dissimilarity functional | Συγγραφείς: | Chatzis, Sotirios P. | Major Field of Science: | Engineering and Technology | Field Category: | Electrical Engineering - Electronic Engineering - Information Engineering | Λέξεις-κλειδιά: | Categorical data;Fuzzy c-means;Fuzzy clustering;Gauss-Multinomial assumption;Regularization | Ημερομηνία Έκδοσης: | Ιου-2011 | Πηγή: | Expert systems with applications, 2011, vol. 38, no. 7, pp. 8684–8689 | Volume: | 38 | Issue: | 7 | Start page: | 8684 | End page: | 8689 | Περιοδικό: | Expert systems with applications | Περίληψη: | Gath-Geva (GG) algorithm is one of the most popular methodologies for fuzzy c-means (FCM)-type clustering of data comprising numeric attributes; it is based on the assumption of data deriving from clusters of Gaussian form, a much more flexible construction compared to the spherical clusters assumption of the original FCM. In this paper, we introduce an extension of the GG algorithm to allow for the effective handling of data with mixed numeric and categorical attributes. Traditionally, fuzzy clustering of such data is conducted by means of the fuzzy k-prototypes algorithm, which merely consists in the execution of the original FCM algorithm using a different dissimilarity functional, suitable for attributes with mixed numeric and categorical attributes. On the contrary, in this work we provide a novel FCM-type algorithm employing a fully probabilistic dissimilarity functional for handling data with mixed-type attributes. Our approach utilizes a fuzzy objective function regularized by Kullback-Leibler (KL) divergence information, and is formulated on the basis of a set of probabilistic assumptions regarding the form of the derived clusters. We evaluate the efficacy of the proposed approach using benchmark data, and we compare it with competing fuzzy and non-fuzzy clustering algorithms | URI: | https://hdl.handle.net/20.500.14279/1632 | ISSN: | 09574174 | DOI: | 10.1016/j.eswa.2011.01.074 | Rights: | © Elsevier | Type: | Article | Affiliation: | Imperial College London Cyprus University of Technology |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
73
checked on 9 Νοε 2023
WEB OF SCIENCETM
Citations
50
53
Last Week
0
0
Last month
2
2
checked on 13 Οκτ 2023
Page view(s)
483
Last Week
0
0
Last month
2
2
checked on 6 Νοε 2024
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα