Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/1621
Τίτλος: | A Nonparametric Bayesian Approach Toward Robot Learning by Demonstration | Συγγραφείς: | Chatzis, Sotirios P. Korkinof, Dimitrios Demiris, Yiannis |
metadata.dc.contributor.other: | Χατζής, Σωτήριος Δεμίρης, Γιάννης |
Major Field of Science: | Engineering and Technology | Field Category: | Computer and Information Sciences | Λέξεις-κλειδιά: | Robots;Galvanomagnetic effects;Computer science;Nonparametric statistics;Gaussian mixture regression;Variational Bayes;Dirichlet process;Robot learning by demonstration | Ημερομηνία Έκδοσης: | Ιου-2012 | Πηγή: | Robotics and autonomous systems, 2012, vol. 60, no. 6, pp. 789–802 | Volume: | 60 | Issue: | 6 | Start page: | 789 | End page: | 802 | Περιοδικό: | Robotics and Autonomous Systems | Περίληψη: | In the past years, many authors have considered application of machine learning methodologies to effect robot learning by demonstration. Gaussian mixture regression (GMR) is one of the most successful methodologies used for this purpose. A major limitation of GMR models concerns automatic selection of the proper number of model states, i.e., the number of model component densities. Existing methods, including likelihood- or entropy-based criteria, usually tend to yield noisy model size estimates while imposing heavy computational requirements. Recently, Dirichlet process (infinite) mixture models have emerged in the cornerstone of nonparametric Bayesian statistics as promising candidates for clustering applications where the number of clusters is unknown a priori. Under this motivation, to resolve the aforementioned issues of GMR-based methods for robot learning by demonstration, in this paper we introduce a nonparametric Bayesian formulation for the GMR model, the Dirichlet process GMR model. We derive an efficient variational Bayesian inference algorithm for the proposed model, and we experimentally investigate its efficacy as a robot learning by demonstration methodology, considering a number of demanding robot learning by demonstration scenarios. | URI: | https://hdl.handle.net/20.500.14279/1621 | ISSN: | 09218890 | DOI: | 10.1016/j.robot.2012.02.005 | Rights: | © 2012 Elsevier. | Type: | Article | Affiliation: | Imperial College London | Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
25
checked on 9 Νοε 2023
WEB OF SCIENCETM
Citations
24
Last Week
0
0
Last month
0
0
checked on 29 Οκτ 2023
Page view(s)
468
Last Week
2
2
Last month
2
2
checked on 31 Ιαν 2025
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα