Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/1621
Τίτλος: A Nonparametric Bayesian Approach Toward Robot Learning by Demonstration
Συγγραφείς: Chatzis, Sotirios P. 
Korkinof, Dimitrios 
Demiris, Yiannis 
metadata.dc.contributor.other: Χατζής, Σωτήριος
Δεμίρης, Γιάννης
Major Field of Science: Engineering and Technology
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: Robots;Galvanomagnetic effects;Computer science;Nonparametric statistics;Gaussian mixture regression;Variational Bayes;Dirichlet process;Robot learning by demonstration
Ημερομηνία Έκδοσης: Ιου-2012
Πηγή: Robotics and autonomous systems, 2012, vol. 60, no. 6, pp. 789–802
Volume: 60
Issue: 6
Start page: 789
End page: 802
Περιοδικό: Robotics and Autonomous Systems 
Περίληψη: In the past years, many authors have considered application of machine learning methodologies to effect robot learning by demonstration. Gaussian mixture regression (GMR) is one of the most successful methodologies used for this purpose. A major limitation of GMR models concerns automatic selection of the proper number of model states, i.e., the number of model component densities. Existing methods, including likelihood- or entropy-based criteria, usually tend to yield noisy model size estimates while imposing heavy computational requirements. Recently, Dirichlet process (infinite) mixture models have emerged in the cornerstone of nonparametric Bayesian statistics as promising candidates for clustering applications where the number of clusters is unknown a priori. Under this motivation, to resolve the aforementioned issues of GMR-based methods for robot learning by demonstration, in this paper we introduce a nonparametric Bayesian formulation for the GMR model, the Dirichlet process GMR model. We derive an efficient variational Bayesian inference algorithm for the proposed model, and we experimentally investigate its efficacy as a robot learning by demonstration methodology, considering a number of demanding robot learning by demonstration scenarios.
URI: https://hdl.handle.net/20.500.14279/1621
ISSN: 09218890
DOI: 10.1016/j.robot.2012.02.005
Rights: © 2012 Elsevier.
Type: Article
Affiliation: Imperial College London 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

25
checked on 9 Νοε 2023

WEB OF SCIENCETM
Citations

24
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s)

468
Last Week
2
Last month
2
checked on 31 Ιαν 2025

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα