Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1621
DC FieldValueLanguage
dc.contributor.authorChatzis, Sotirios P.-
dc.contributor.authorKorkinof, Dimitrios-
dc.contributor.authorDemiris, Yiannis-
dc.contributor.otherΧατζής, Σωτήριος-
dc.contributor.otherΔεμίρης, Γιάννης-
dc.date.accessioned2013-02-19T15:50:29Zen
dc.date.accessioned2013-05-17T05:22:36Z-
dc.date.accessioned2015-12-02T10:02:10Z-
dc.date.available2013-02-19T15:50:29Zen
dc.date.available2013-05-17T05:22:36Z-
dc.date.available2015-12-02T10:02:10Z-
dc.date.issued2012-06-
dc.identifier.citationRobotics and autonomous systems, 2012, vol. 60, no. 6, pp. 789–802en_US
dc.identifier.issn09218890-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1621-
dc.description.abstractIn the past years, many authors have considered application of machine learning methodologies to effect robot learning by demonstration. Gaussian mixture regression (GMR) is one of the most successful methodologies used for this purpose. A major limitation of GMR models concerns automatic selection of the proper number of model states, i.e., the number of model component densities. Existing methods, including likelihood- or entropy-based criteria, usually tend to yield noisy model size estimates while imposing heavy computational requirements. Recently, Dirichlet process (infinite) mixture models have emerged in the cornerstone of nonparametric Bayesian statistics as promising candidates for clustering applications where the number of clusters is unknown a priori. Under this motivation, to resolve the aforementioned issues of GMR-based methods for robot learning by demonstration, in this paper we introduce a nonparametric Bayesian formulation for the GMR model, the Dirichlet process GMR model. We derive an efficient variational Bayesian inference algorithm for the proposed model, and we experimentally investigate its efficacy as a robot learning by demonstration methodology, considering a number of demanding robot learning by demonstration scenarios.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofRobotics and Autonomous Systemsen_US
dc.rights© 2012 Elsevier.en_US
dc.subjectRobotsen_US
dc.subjectGalvanomagnetic effectsen_US
dc.subjectComputer scienceen_US
dc.subjectNonparametric statisticsen_US
dc.subjectGaussian mixture regressionen_US
dc.subjectVariational Bayesen_US
dc.subjectDirichlet processen_US
dc.subjectRobot learning by demonstrationen_US
dc.titleA Nonparametric Bayesian Approach Toward Robot Learning by Demonstrationen_US
dc.typeArticleen_US
dc.collaborationImperial College Londonen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.journalsHybrid Open Accessen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.robot.2012.02.005en_US
dc.dept.handle123456789/54en
dc.relation.issue6en_US
dc.relation.volume60en_US
cut.common.academicyear2011-2012en_US
dc.identifier.spage789en_US
dc.identifier.epage802en_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.languageiso639-1en-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4956-4013-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.journal.journalissn0921-8890-
crisitem.journal.publisherElsevier-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

25
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations

24
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

468
Last Week
2
Last month
2
checked on Jan 30, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.