Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/14989
Τίτλος: | Classification of satellite cloud imagery based on multi-feature texture analysis and neural networks | Συγγραφείς: | Christodoulou, C. I. Michaelides, S. C. Pattichis, Constantinos S. Kyriakou, Kyriaki |
Major Field of Science: | Humanities | Field Category: | Languages and Literature;Other Humanities | Λέξεις-κλειδιά: | Clouds;Cloud;Sky images | Ημερομηνία Έκδοσης: | 1-Ιαν-2001 | Πηγή: | IEEE International Conference on Image Processing, Volume 1, 2001, Pages 497-500 | Conference: | IEEE International Conference on Image Processing (ICIP) 2001 | Περίληψη: | The aim of this work was to develop a system based on modular neural networks and multi-feature texture analysis that will facilitate the automated interpretation of cloud images. This will speed up the interpretation process and provide continuity in the application of satellite imagery for weather forecasting. A series of infrared satellite images from the Geostationary satellite METEOSAT7 were employed in this research. Nine different texture feature sets (a total of 55 features) were extracted from the segmented cloud images using the following algorithms: first order statistics, spatial gray level dependence matrices, gray level difference statistics, neighborhood gray tone difference matrix, statistical feature matrix, Laws texture energy measures, fractals, and Fourier power spectrum The neural network SOFM classifier and the statistical KNN classifier were used for the classification of the cloud images. Furthermore, the classification results of the different feature sets were combined improving the classification yield to 91%. | URI: | https://hdl.handle.net/20.500.14279/14989 | Type: | Conference Papers | Affiliation: | University of Cyprus | Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
CORE Recommender
SCOPUSTM
Citations
50
4
checked on 6 Νοε 2023
Page view(s) 50
306
Last Week
1
1
Last month
3
3
checked on 14 Νοε 2024
Google ScholarTM
Check
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα