Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/14989
DC FieldValueLanguage
dc.contributor.authorChristodoulou, C. I.-
dc.contributor.authorMichaelides, S. C.-
dc.contributor.authorPattichis, Constantinos S.-
dc.contributor.authorKyriakou, Kyriaki-
dc.date.accessioned2019-08-27T07:11:57Z-
dc.date.available2019-08-27T07:11:57Z-
dc.date.issued2001-01-01-
dc.identifier.citationIEEE International Conference on Image Processing, Volume 1, 2001, Pages 497-500en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14279/14989-
dc.description.abstractThe aim of this work was to develop a system based on modular neural networks and multi-feature texture analysis that will facilitate the automated interpretation of cloud images. This will speed up the interpretation process and provide continuity in the application of satellite imagery for weather forecasting. A series of infrared satellite images from the Geostationary satellite METEOSAT7 were employed in this research. Nine different texture feature sets (a total of 55 features) were extracted from the segmented cloud images using the following algorithms: first order statistics, spatial gray level dependence matrices, gray level difference statistics, neighborhood gray tone difference matrix, statistical feature matrix, Laws texture energy measures, fractals, and Fourier power spectrum The neural network SOFM classifier and the statistical KNN classifier were used for the classification of the cloud images. Furthermore, the classification results of the different feature sets were combined improving the classification yield to 91%.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.subjectCloudsen_US
dc.subjectClouden_US
dc.subjectSky imagesen_US
dc.titleClassification of satellite cloud imagery based on multi-feature texture analysis and neural networksen_US
dc.typeConference Papersen_US
dc.collaborationUniversity of Cyprusen_US
dc.subject.categoryLanguages and Literatureen_US
dc.subject.categoryOther Humanitiesen_US
dc.countryCyprusen_US
dc.subject.fieldHumanitiesen_US
dc.publicationPeer Revieweden_US
dc.relation.conferenceIEEE International Conference on Image Processing (ICIP) 2001en_US
dc.identifier.scopus2-s2.0-0035167031-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/0035167031-
cut.common.academicyear2019-2020en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeconferenceObject-
crisitem.author.deptDepartment of Rehabilitation Sciences-
crisitem.author.facultyFaculty of Health Sciences-
crisitem.author.parentorgFaculty of Health Sciences-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 50

4
checked on Nov 6, 2023

Page view(s)

309
Last Week
1
Last month
2
checked on Dec 26, 2024

Google ScholarTM

Check


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.