Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/14964
Title: Locally optimal designs for errors-in-variables models
Authors: Konstantinou, Maria 
Dette, H. 
Major Field of Science: Agricultural Sciences
Field Category: Environmental Biotechnology;Other Agricultural Sciences
Keywords: Classical error;D-optimality;Measurement error model;Optimal design
Issue Date: 23-Oct-2015
Source: Biometrika, 2015, vol. 102, no. 4, pp. 951-958.
Volume: 102
Issue: 4
Start page: 951
End page: 958
Journal: Biometrika 
Abstract: © 2015 Biometrika Trust. We consider the construction of optimal designs for nonlinear regression models when there are measurement errors in the covariates. Corresponding approximate design theory is developed for maximum likelihood and least-squares estimation, with the latter leading to nonconcave optimization problems. Analytical characterizations of the locally D-optimal saturated designs are provided for the Michaelis-Menten, Emax and exponential regression models. Through concrete applications, we illustrate how measurement errors in the covariates affect the optimal choice of design and show that the locally D-optimal saturated designs are highly efficient for relatively small misspecifications of the parameter values.
URI: https://hdl.handle.net/20.500.14279/14964
ISSN: 00063444
DOI: 10.1093/biomet/asv048
Rights: © Biometrika Trust
Type: Article
Affiliation : Ruhr-Universität Bochum 
Publication Type: Peer Reviewed
Appears in Collections:Άρθρα/Articles

Files in This Item:
File Description SizeFormat
locally otpimal.pdf355.85 kBAdobe PDFView/Open
CORE Recommender
Show full item record

SCOPUSTM   
Citations

5
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

4
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s) 50

383
Last Week
2
Last month
4
checked on Dec 22, 2024

Download(s)

111
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons