Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/14964
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Konstantinou, Maria | - |
dc.contributor.author | Dette, H. | - |
dc.date.accessioned | 2019-08-22T10:25:28Z | - |
dc.date.available | 2019-08-22T10:25:28Z | - |
dc.date.issued | 2015-10-23 | - |
dc.identifier.citation | Biometrika, 2015, vol. 102, no. 4, pp. 951-958. | en_US |
dc.identifier.issn | 00063444 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/14964 | - |
dc.description.abstract | © 2015 Biometrika Trust. We consider the construction of optimal designs for nonlinear regression models when there are measurement errors in the covariates. Corresponding approximate design theory is developed for maximum likelihood and least-squares estimation, with the latter leading to nonconcave optimization problems. Analytical characterizations of the locally D-optimal saturated designs are provided for the Michaelis-Menten, Emax and exponential regression models. Through concrete applications, we illustrate how measurement errors in the covariates affect the optimal choice of design and show that the locally D-optimal saturated designs are highly efficient for relatively small misspecifications of the parameter values. | en_US |
dc.format | en_US | |
dc.language.iso | en | en_US |
dc.relation.ispartof | Biometrika | en_US |
dc.rights | © Biometrika Trust | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Classical error | en_US |
dc.subject | D-optimality | en_US |
dc.subject | Measurement error model | en_US |
dc.subject | Optimal design | en_US |
dc.title | Locally optimal designs for errors-in-variables models | en_US |
dc.type | Article | en_US |
dc.collaboration | Ruhr-Universität Bochum | en_US |
dc.subject.category | Environmental Biotechnology | en_US |
dc.subject.category | Other Agricultural Sciences | en_US |
dc.country | Germany | en_US |
dc.subject.field | Agricultural Sciences | en_US |
dc.publication | Peer Reviewed | en_US |
dc.identifier.doi | 10.1093/biomet/asv048 | en_US |
dc.identifier.scopus | 2-s2.0-84950325444 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84950325444 | - |
dc.relation.issue | 4 | en_US |
dc.relation.volume | 102 | en_US |
cut.common.academicyear | 2015-2016 | en_US |
dc.identifier.spage | 951 | en_US |
dc.identifier.epage | 958 | en_US |
item.grantfulltext | open | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairetype | article | - |
crisitem.journal.journalissn | 1464-3510 | - |
crisitem.journal.publisher | Oxford University Press | - |
crisitem.author.dept | Department of Chemical Engineering | - |
crisitem.author.faculty | Faculty of Geotechnical Sciences and Environmental Management | - |
crisitem.author.orcid | 0000-0002-4140-0444 | - |
crisitem.author.parentorg | Faculty of Geotechnical Sciences and Environmental Management | - |
Appears in Collections: | Άρθρα/Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
locally otpimal.pdf | 355.85 kB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
5
checked on Mar 14, 2024
WEB OF SCIENCETM
Citations
4
Last Week
0
0
Last month
0
0
checked on Oct 29, 2023
Page view(s) 50
383
Last Week
2
2
Last month
4
4
checked on Dec 22, 2024
Download(s)
111
checked on Dec 22, 2024
Google ScholarTM
Check
Altmetric
This item is licensed under a Creative Commons License