Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/14963
Τίτλος: | Bayesian D-optimal designs for error-in-variables models | Συγγραφείς: | Konstantinou, Maria Dette, Holger |
Major Field of Science: | Agricultural Sciences | Field Category: | Environmental Biotechnology;Other Agricultural Sciences | Λέξεις-κλειδιά: | Bayesian optimal designs;classical errors;D-optimality;error-in-variables models | Ημερομηνία Έκδοσης: | 1-Μαΐ-2017 | Πηγή: | Applied Stochastic Models in Business and Industry, vol. 33, no. 3, pp. 269-281 | Volume: | 33 | Issue: | 3 | Start page: | 269 | End page: | 281 | Περιοδικό: | Applied Stochastic Models in Business and Industry | Περίληψη: | Copyright © 2017 John Wiley & Sons, Ltd. Bayesian optimality criteria provide a robust design strategy to parameter misspecification. We develop an approximate design theory for Bayesian D-optimality for nonlinear regression models with covariates subject to measurement errors. Both maximum likelihood and least squares estimation are studied, and explicit characterisations of the Bayesian D-optimal saturated designs for the Michaelis–Menten, Emax and exponential regression models are provided. Several data examples are considered for the case of no preference for specific parameter values, where Bayesian D-optimal saturated designs are calculated using the uniform prior and compared with several other designs, including the corresponding locally D-optimal designs, which are often used in practice. Copyright © 2017 John Wiley & Sons, Ltd. | URI: | https://hdl.handle.net/20.500.14279/14963 | ISSN: | 15241904 | DOI: | 10.1002/asmb.2226 | Rights: | © Wiley | Type: | Article | Affiliation: | Ruhr-Universität Bochum Cyprus University of Technology |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
3
checked on 14 Μαρ 2024
WEB OF SCIENCETM
Citations
3
Last Week
0
0
Last month
0
0
checked on 29 Οκτ 2023
Page view(s) 50
325
Last Week
0
0
Last month
3
3
checked on 4 Δεκ 2024
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα