Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/14963
DC FieldValueLanguage
dc.contributor.authorKonstantinou, Maria-
dc.contributor.authorDette, Holger-
dc.date.accessioned2019-08-22T10:20:55Z-
dc.date.available2019-08-22T10:20:55Z-
dc.date.issued2017-05-01-
dc.identifier.citationApplied Stochastic Models in Business and Industry, vol. 33, no. 3, pp. 269-281en_US
dc.identifier.issn15241904-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/14963-
dc.description.abstractCopyright © 2017 John Wiley & Sons, Ltd. Bayesian optimality criteria provide a robust design strategy to parameter misspecification. We develop an approximate design theory for Bayesian D-optimality for nonlinear regression models with covariates subject to measurement errors. Both maximum likelihood and least squares estimation are studied, and explicit characterisations of the Bayesian D-optimal saturated designs for the Michaelis–Menten, Emax and exponential regression models are provided. Several data examples are considered for the case of no preference for specific parameter values, where Bayesian D-optimal saturated designs are calculated using the uniform prior and compared with several other designs, including the corresponding locally D-optimal designs, which are often used in practice. Copyright © 2017 John Wiley & Sons, Ltd.en_US
dc.language.isoenen_US
dc.relation.ispartofApplied Stochastic Models in Business and Industryen_US
dc.rights© Wileyen_US
dc.subjectBayesian optimal designsen_US
dc.subjectclassical errorsen_US
dc.subjectD-optimalityen_US
dc.subjecterror-in-variables modelsen_US
dc.titleBayesian D-optimal designs for error-in-variables modelsen_US
dc.typeArticleen_US
dc.collaborationRuhr-Universität Bochumen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryEnvironmental Biotechnologyen_US
dc.subject.categoryOther Agricultural Sciencesen_US
dc.journalsSubscriptionen_US
dc.countryGermanyen_US
dc.countryCyprusen_US
dc.subject.fieldAgricultural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1002/asmb.2226en_US
dc.identifier.scopus2-s2.0-85012904848-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85012904848-
dc.relation.issue3en_US
dc.relation.volume33en_US
cut.common.academicyear2016-2017en_US
dc.identifier.spage269en_US
dc.identifier.epage281en_US
item.openairetypearticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Chemical Engineering-
crisitem.author.facultyFaculty of Geotechnical Sciences and Environmental Management-
crisitem.author.orcid0000-0002-4140-0444-
crisitem.author.parentorgFaculty of Geotechnical Sciences and Environmental Management-
crisitem.journal.journalissn1526-4025-
crisitem.journal.publisherWiley-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

3
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

3
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s) 50

326
Last Week
1
Last month
3
checked on Dec 11, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.