Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/14963
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Konstantinou, Maria | - |
dc.contributor.author | Dette, Holger | - |
dc.date.accessioned | 2019-08-22T10:20:55Z | - |
dc.date.available | 2019-08-22T10:20:55Z | - |
dc.date.issued | 2017-05-01 | - |
dc.identifier.citation | Applied Stochastic Models in Business and Industry, vol. 33, no. 3, pp. 269-281 | en_US |
dc.identifier.issn | 15241904 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/14963 | - |
dc.description.abstract | Copyright © 2017 John Wiley & Sons, Ltd. Bayesian optimality criteria provide a robust design strategy to parameter misspecification. We develop an approximate design theory for Bayesian D-optimality for nonlinear regression models with covariates subject to measurement errors. Both maximum likelihood and least squares estimation are studied, and explicit characterisations of the Bayesian D-optimal saturated designs for the Michaelis–Menten, Emax and exponential regression models are provided. Several data examples are considered for the case of no preference for specific parameter values, where Bayesian D-optimal saturated designs are calculated using the uniform prior and compared with several other designs, including the corresponding locally D-optimal designs, which are often used in practice. Copyright © 2017 John Wiley & Sons, Ltd. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Applied Stochastic Models in Business and Industry | en_US |
dc.rights | © Wiley | en_US |
dc.subject | Bayesian optimal designs | en_US |
dc.subject | classical errors | en_US |
dc.subject | D-optimality | en_US |
dc.subject | error-in-variables models | en_US |
dc.title | Bayesian D-optimal designs for error-in-variables models | en_US |
dc.type | Article | en_US |
dc.collaboration | Ruhr-Universität Bochum | en_US |
dc.collaboration | Cyprus University of Technology | en_US |
dc.subject.category | Environmental Biotechnology | en_US |
dc.subject.category | Other Agricultural Sciences | en_US |
dc.journals | Subscription | en_US |
dc.country | Germany | en_US |
dc.country | Cyprus | en_US |
dc.subject.field | Agricultural Sciences | en_US |
dc.publication | Peer Reviewed | en_US |
dc.identifier.doi | 10.1002/asmb.2226 | en_US |
dc.identifier.scopus | 2-s2.0-85012904848 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85012904848 | - |
dc.relation.issue | 3 | en_US |
dc.relation.volume | 33 | en_US |
cut.common.academicyear | 2016-2017 | en_US |
dc.identifier.spage | 269 | en_US |
dc.identifier.epage | 281 | en_US |
item.openairetype | article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.languageiso639-1 | en | - |
item.fulltext | No Fulltext | - |
crisitem.author.dept | Department of Chemical Engineering | - |
crisitem.author.faculty | Faculty of Geotechnical Sciences and Environmental Management | - |
crisitem.author.orcid | 0000-0002-4140-0444 | - |
crisitem.author.parentorg | Faculty of Geotechnical Sciences and Environmental Management | - |
crisitem.journal.journalissn | 1526-4025 | - |
crisitem.journal.publisher | Wiley | - |
Appears in Collections: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
3
checked on Mar 14, 2024
WEB OF SCIENCETM
Citations
3
Last Week
0
0
Last month
0
0
checked on Oct 29, 2023
Page view(s) 50
326
Last Week
1
1
Last month
3
3
checked on Dec 11, 2024
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.