Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/14961
Τίτλος: | Optimal designs for comparing regression models with correlated observations | Συγγραφείς: | Dette, Holger Schorning, Kirsten Konstantinou, Maria |
Major Field of Science: | Agricultural Sciences | Field Category: | Environmental Biotechnology;Other Agricultural Sciences | Λέξεις-κλειδιά: | Comparing regression curves;Confidence band;Correlated observations;Linear regression;Optimal design | Ημερομηνία Έκδοσης: | 1-Σεπ-2017 | Πηγή: | Computational Statistics and Data Analysis, 2017, vol. 113, pp. 273-286 | Volume: | 113 | Start page: | 273 | End page: | 286 | Περιοδικό: | Computational Statistics and Data Analysis | Περίληψη: | The problem under investigation is that of efficient statistical inference for comparing two regression curves estimated from two samples of dependent measurements. Based on a representation of the best pair of linear unbiased estimators in continuous time models as a stochastic integral, a pair of linear unbiased estimators with corresponding optimal designs for finite sample size is constructed. This pair minimises the width of the confidence band for the difference between the estimated curves in a class of linear unbiased estimators approximating the stochastic integrals and is very close to the pair of weighted least squares estimators with corresponding optimal design. Thus results readily available in the literature are extended to the case of correlated observations and an easily implementable solution is provided which is practically non distinguishable from the weighted least squares estimators. The advantages of using the proposed pairs of estimators with corresponding optimal designs for the comparison of regression models are illustrated via several numerical examples. | URI: | https://hdl.handle.net/20.500.14279/14961 | ISSN: | 01679473 | DOI: | 10.1016/j.csda.2016.06.017 | Rights: | © Elsevier | Type: | Article | Affiliation: | Ruhr-Universität Bochum Cyprus University of Technology |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
8
checked on 14 Μαρ 2024
WEB OF SCIENCETM
Citations
7
Last Week
0
0
Last month
0
0
checked on 29 Οκτ 2023
Page view(s)
303
Last Week
0
0
Last month
5
5
checked on 22 Δεκ 2024
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα