Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/14961
DC FieldValueLanguage
dc.contributor.authorDette, Holger-
dc.contributor.authorSchorning, Kirsten-
dc.contributor.authorKonstantinou, Maria-
dc.date.accessioned2019-08-22T09:59:43Z-
dc.date.available2019-08-22T09:59:43Z-
dc.date.issued2017-09-01-
dc.identifier.citationComputational Statistics and Data Analysis, 2017, vol. 113, pp. 273-286en_US
dc.identifier.issn01679473-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/14961-
dc.description.abstractThe problem under investigation is that of efficient statistical inference for comparing two regression curves estimated from two samples of dependent measurements. Based on a representation of the best pair of linear unbiased estimators in continuous time models as a stochastic integral, a pair of linear unbiased estimators with corresponding optimal designs for finite sample size is constructed. This pair minimises the width of the confidence band for the difference between the estimated curves in a class of linear unbiased estimators approximating the stochastic integrals and is very close to the pair of weighted least squares estimators with corresponding optimal design. Thus results readily available in the literature are extended to the case of correlated observations and an easily implementable solution is provided which is practically non distinguishable from the weighted least squares estimators. The advantages of using the proposed pairs of estimators with corresponding optimal designs for the comparison of regression models are illustrated via several numerical examples.en_US
dc.language.isoenen_US
dc.relation.ispartofComputational Statistics and Data Analysisen_US
dc.rights© Elsevieren_US
dc.subjectComparing regression curvesen_US
dc.subjectConfidence banden_US
dc.subjectCorrelated observationsen_US
dc.subjectLinear regressionen_US
dc.subjectOptimal designen_US
dc.titleOptimal designs for comparing regression models with correlated observationsen_US
dc.typeArticleen_US
dc.collaborationRuhr-Universität Bochumen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryEnvironmental Biotechnologyen_US
dc.subject.categoryOther Agricultural Sciencesen_US
dc.journalsSubscriptionen_US
dc.countryGermanyen_US
dc.countryCyprusen_US
dc.subject.fieldAgricultural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.csda.2016.06.017en_US
dc.identifier.scopus2-s2.0-84995642163-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84995642163-
dc.relation.volume113en_US
cut.common.academicyear2017-2018en_US
dc.identifier.spage273en_US
dc.identifier.epage286en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn0167-9473-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Chemical Engineering-
crisitem.author.facultyFaculty of Geotechnical Sciences and Environmental Management-
crisitem.author.orcid0000-0002-4140-0444-
crisitem.author.parentorgFaculty of Geotechnical Sciences and Environmental Management-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

8
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

7
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

303
Last Week
0
Last month
5
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.