Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/14674
DC FieldValueLanguage
dc.contributor.authorFuertes, Ana Maria-
dc.contributor.authorKalotychou, Elena-
dc.contributor.otherΚαλοτύχου, Έλενα-
dc.date.accessioned2019-07-23T07:34:24Z-
dc.date.available2019-07-23T07:34:24Z-
dc.date.issued2006-11-15-
dc.identifier.citationComputational Statistics and Data Analysis, 2006, vol. 51, no. 2, pp. 1420-1441en_US
dc.identifier.issn01679473-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/14674-
dc.description.abstractSovereign default models that differ in their treatment of unobservable country, regional and time heterogeneities are systematically compared. The analysis is based on annual data over the 1983-2002 period for 96 developing economies. Inference-based criteria and parameter plausibility overwhelmingly favour more complex models that allow the link between the probability response and the fundamentals to vary over time and across countries. However, out-of-sample forecast evaluation using several loss functions and equal-predictive-ability tests suggests that simplicity beats complexity. Parsimonious pooled logit models produce the most accurate sovereign default forecasts and outperform the naive benchmarks.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofComputational Statistics and Data Analysisen_US
dc.rights© Elsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectCredit risken_US
dc.subjectBenchmarkingen_US
dc.subjectDefault probabilityen_US
dc.subjectLoss functionsen_US
dc.subjectPredictive performanceen_US
dc.subjectEmerging marketsen_US
dc.titleEarly warning systems for sovereign debt crises: The role of heterogeneityen_US
dc.typeArticleen_US
dc.collaborationCity University Londonen_US
dc.subject.categoryEconomics and Businessen_US
dc.journalsOpen Accessen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldSocial Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.csda.2006.08.023en_US
dc.identifier.scopus2-s2.0-33750371006-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/33750371006-
dc.relation.issue2en_US
dc.relation.volume51en_US
cut.common.academicyear2005-2006en_US
dc.identifier.spage1420en_US
dc.identifier.epage1441en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.journal.journalissn0167-9473-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Finance, Accounting and Management Science-
crisitem.author.facultyFaculty of Tourism Management, Hospitality and Entrepreneurship-
crisitem.author.orcid0000-0003-2824-0383-
crisitem.author.parentorgFaculty of Management and Economics-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

58
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

50
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

410
Last Week
3
Last month
5
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons