Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/14563
Τίτλος: Robust artificial neural networks for pricing of European options
Συγγραφείς: Andreou, Panayiotis 
Charalambous, Chris 
Martzoukos, Spiros H. 
metadata.dc.contributor.other: Ανδρέου, Παναγιώτης
Major Field of Science: Social Sciences
Field Category: Economics and Business
Λέξεις-κλειδιά: Artificial neural networks;Huber function;Implied parameters;Option pricing & trading;Robust estimation
Ημερομηνία Έκδοσης: 11-Απρ-2006
Πηγή: Computational Economics, 2006, vol. 27, no. 2-3, pp. 329-351
Volume: 27
Issue: 2-3
Start page: 329
End page: 351
Περιοδικό: Computational Economics 
Περίληψη: The option pricing ability of Robust Artificial Neural Networks optimized with the Huber function is compared against those optimized with Least Squares. Comparison is in respect to pricing European call options on the S&P 500 using daily data for the period April 1998 to August 2001. The analysis is augmented with the use of several historical and implied volatility measures. Implied volatilities are the overall average, and the average per maturity. Beyond the standard neural networks, hybrid networks that directly incorporate information from the parametric model are included in the analysis. It is shown that the artificial neural network models with the use of the Huber function outperform the ones optimized with least squares..
URI: https://hdl.handle.net/20.500.14279/14563
ISSN: 09277099
DOI: 10.1007/s10614-006-9030-x
Rights: © Springer
Type: Article
Affiliation: University of Cyprus 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

18
checked on 14 Μαρ 2024

Page view(s) 50

325
Last Week
0
Last month
2
checked on 9 Ιαν 2025

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα