Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/14563
Τίτλος: | Robust artificial neural networks for pricing of European options | Συγγραφείς: | Andreou, Panayiotis Charalambous, Chris Martzoukos, Spiros H. |
metadata.dc.contributor.other: | Ανδρέου, Παναγιώτης | Major Field of Science: | Social Sciences | Field Category: | Economics and Business | Λέξεις-κλειδιά: | Artificial neural networks;Huber function;Implied parameters;Option pricing & trading;Robust estimation | Ημερομηνία Έκδοσης: | 11-Απρ-2006 | Πηγή: | Computational Economics, 2006, vol. 27, no. 2-3, pp. 329-351 | Volume: | 27 | Issue: | 2-3 | Start page: | 329 | End page: | 351 | Περιοδικό: | Computational Economics | Περίληψη: | The option pricing ability of Robust Artificial Neural Networks optimized with the Huber function is compared against those optimized with Least Squares. Comparison is in respect to pricing European call options on the S&P 500 using daily data for the period April 1998 to August 2001. The analysis is augmented with the use of several historical and implied volatility measures. Implied volatilities are the overall average, and the average per maturity. Beyond the standard neural networks, hybrid networks that directly incorporate information from the parametric model are included in the analysis. It is shown that the artificial neural network models with the use of the Huber function outperform the ones optimized with least squares.. | URI: | https://hdl.handle.net/20.500.14279/14563 | ISSN: | 09277099 | DOI: | 10.1007/s10614-006-9030-x | Rights: | © Springer | Type: | Article | Affiliation: | University of Cyprus | Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
18
checked on 14 Μαρ 2024
Page view(s) 50
325
Last Week
0
0
Last month
2
2
checked on 9 Ιαν 2025
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα