Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/14563
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Andreou, Panayiotis | - |
dc.contributor.author | Charalambous, Chris | - |
dc.contributor.author | Martzoukos, Spiros H. | - |
dc.contributor.other | Ανδρέου, Παναγιώτης | - |
dc.date.accessioned | 2019-07-16T08:41:31Z | - |
dc.date.available | 2019-07-16T08:41:31Z | - |
dc.date.issued | 2006-04-11 | - |
dc.identifier.citation | Computational Economics, 2006, vol. 27, no. 2-3, pp. 329-351 | en_US |
dc.identifier.issn | 09277099 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/14563 | - |
dc.description.abstract | The option pricing ability of Robust Artificial Neural Networks optimized with the Huber function is compared against those optimized with Least Squares. Comparison is in respect to pricing European call options on the S&P 500 using daily data for the period April 1998 to August 2001. The analysis is augmented with the use of several historical and implied volatility measures. Implied volatilities are the overall average, and the average per maturity. Beyond the standard neural networks, hybrid networks that directly incorporate information from the parametric model are included in the analysis. It is shown that the artificial neural network models with the use of the Huber function outperform the ones optimized with least squares.. | en_US |
dc.format | en_US | |
dc.language.iso | en | en_US |
dc.relation.ispartof | Computational Economics | en_US |
dc.rights | © Springer | en_US |
dc.subject | Artificial neural networks | en_US |
dc.subject | Huber function | en_US |
dc.subject | Implied parameters | en_US |
dc.subject | Option pricing & trading | en_US |
dc.subject | Robust estimation | en_US |
dc.title | Robust artificial neural networks for pricing of European options | en_US |
dc.type | Article | en_US |
dc.collaboration | University of Cyprus | en_US |
dc.subject.category | Economics and Business | en_US |
dc.journals | Subscription | en_US |
dc.country | Cyprus | en_US |
dc.subject.field | Social Sciences | en_US |
dc.publication | Peer Reviewed | en_US |
dc.identifier.doi | 10.1007/s10614-006-9030-x | en_US |
dc.identifier.scopus | 2-s2.0-33744461538 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/33744461538 | - |
dc.relation.issue | 2-3 | en_US |
dc.relation.volume | 27 | en_US |
cut.common.academicyear | 2019-2020 | en_US |
dc.identifier.spage | 329 | en_US |
dc.identifier.epage | 351 | en_US |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairetype | article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.journal.journalissn | 1572-9974 | - |
crisitem.journal.publisher | Springer Nature | - |
crisitem.author.dept | Department of Finance, Accounting and Management Science | - |
crisitem.author.faculty | Faculty of Tourism Management, Hospitality and Entrepreneurship | - |
crisitem.author.orcid | 0000-0001-5742-0311 | - |
crisitem.author.parentorg | Faculty of Management and Economics | - |
Appears in Collections: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
18
checked on Mar 14, 2024
Page view(s) 50
325
Last Week
0
0
Last month
2
2
checked on Jan 9, 2025
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.