Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/14400
Τίτλος: Geostatistical prediction and simulation of point values from areal data
Συγγραφείς: Kyriakidis, Phaedon 
Yoo, Eun-Hye
Major Field of Science: Engineering and Technology
Field Category: Civil Engineering
Λέξεις-κλειδιά: Population distribution;Census;Areal interpolation
Ημερομηνία Έκδοσης: 1-Απρ-2005
Πηγή: Geographical Analysis, 2005, vol. 37, no .2, pp. 124-151
Volume: 37
Issue: 2
Start page: 124
End page: 151
Περιοδικό: Geographical Analysis 
Περίληψη: The spatial prediction and simulation of point values from areal data are addressed within the general geostatistical framework of change of support (the term support referring to the domain informed by each measurement or unknown value). It is shown that the geostatistical framework (i) can explicitly and consistently account for the support differences between the available areal data and the sought-after point predictions, (ii) yields coherent (mass-preserving or pycnophylactic) predictions, and (iii) provides a measure of reliability (standard error) associated with each prediction. In the case of stochastic simulation, alternative point-support simulated realizations of a spatial attribute reproduce (i) a point-support histogram (Gaussian in this work), (ii) a point-support semivariogram model (possibly including anisotropic nested structures), and (iii) when upscaled, the available areal data. Such point-support-simulated realizations can be used in a Monte Carlo framework to assess the uncertainty in spatially distributed model outputs operating at a fine spatial resolution because of uncertain input parameters inferred from coarser spatial resolution data. Alternatively, such simulated realizations can be used in a model-based hypothesis-testing context to approximate the sampling distribution of, say, the correlation coefficient between two spatial data sets, when one is available at a point support and the other at an areal support. A case study using synthetic data illustrates the application of the proposed methodology in a remote sensing context, whereby areal data are available on a regular pixel support. It is demonstrated that point-support (sub-pixel scale) predictions and simulated realizations can be readily obtained, and that such predictions and realizations are consistent with the available information at the coarser (pixel-level) spatial resolution. © 2005 The Ohio State University.
URI: https://hdl.handle.net/20.500.14279/14400
ISSN: 167363
DOI: 10.1111/j.1538-4632.2005.00633.x
Rights: © John Wiley & Sons
Type: Article
Affiliation: University of California 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

76
checked on 14 Μαρ 2024

WEB OF SCIENCETM
Citations

71
Last Week
1
Last month
0
checked on 29 Οκτ 2023

Page view(s)

275
Last Week
0
Last month
3
checked on 30 Ιαν 2025

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα