Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/14400
DC FieldValueLanguage
dc.contributor.authorKyriakidis, Phaedon-
dc.contributor.authorYoo, Eun-Hye-
dc.date.accessioned2019-07-09T05:13:34Z-
dc.date.available2019-07-09T05:13:34Z-
dc.date.issued2005-04-01-
dc.identifier.citationGeographical Analysis, 2005, vol. 37, no .2, pp. 124-151en_US
dc.identifier.issn167363-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/14400-
dc.description.abstractThe spatial prediction and simulation of point values from areal data are addressed within the general geostatistical framework of change of support (the term support referring to the domain informed by each measurement or unknown value). It is shown that the geostatistical framework (i) can explicitly and consistently account for the support differences between the available areal data and the sought-after point predictions, (ii) yields coherent (mass-preserving or pycnophylactic) predictions, and (iii) provides a measure of reliability (standard error) associated with each prediction. In the case of stochastic simulation, alternative point-support simulated realizations of a spatial attribute reproduce (i) a point-support histogram (Gaussian in this work), (ii) a point-support semivariogram model (possibly including anisotropic nested structures), and (iii) when upscaled, the available areal data. Such point-support-simulated realizations can be used in a Monte Carlo framework to assess the uncertainty in spatially distributed model outputs operating at a fine spatial resolution because of uncertain input parameters inferred from coarser spatial resolution data. Alternatively, such simulated realizations can be used in a model-based hypothesis-testing context to approximate the sampling distribution of, say, the correlation coefficient between two spatial data sets, when one is available at a point support and the other at an areal support. A case study using synthetic data illustrates the application of the proposed methodology in a remote sensing context, whereby areal data are available on a regular pixel support. It is demonstrated that point-support (sub-pixel scale) predictions and simulated realizations can be readily obtained, and that such predictions and realizations are consistent with the available information at the coarser (pixel-level) spatial resolution. © 2005 The Ohio State University.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofGeographical Analysisen_US
dc.rights© John Wiley & Sonsen_US
dc.subjectPopulation distributionen_US
dc.subjectCensusen_US
dc.subjectAreal interpolationen_US
dc.titleGeostatistical prediction and simulation of point values from areal dataen_US
dc.typeArticleen_US
dc.collaborationUniversity of Californiaen_US
dc.subject.categoryCivil Engineeringen_US
dc.countryUnited Statesen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1111/j.1538-4632.2005.00633.xen_US
dc.identifier.scopus2-s2.0-17344365541en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/17344365541en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.relation.issue2en_US
dc.relation.volume37en_US
cut.common.academicyear2004-2005en_US
dc.identifier.spage124en_US
dc.identifier.epage151en_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.languageiso639-1en-
crisitem.author.deptDepartment of Civil Engineering and Geomatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-4222-8567-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.journal.journalissn1538-4632-
crisitem.journal.publisherWiley-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

76
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

71
Last Week
1
Last month
0
checked on Oct 29, 2023

Page view(s)

275
Last Week
0
Last month
3
checked on Jan 30, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.