Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/1433
Τίτλος: Modeling and simulation of a stand-alone photovoltaic system using an adaptive artificial neural network: Proposition for a new sizing procedure
Συγγραφείς: Mellit, Adel 
Benghanem, Mohamed S. 
Kalogirou, Soteris A. 
Major Field of Science: Engineering and Technology
Field Category: Environmental Engineering
Λέξεις-κλειδιά: Stand-alone PV power system;Sizing procedure;Modeling;Simulation;Artificial Neural Networks (ANN)
Ημερομηνία Έκδοσης: Φεβ-2007
Πηγή: Renewable Energy, 2007, vol. 32, no. 2, pp. 285-313
Volume: 32
Issue: 2
Start page: 285
End page: 313
Περιοδικό: Renewable Energy 
Περίληψη: This paper presents an adaptive artificial neural network (ANN) for modeling and simulation of a Stand-Alone photovoltaic (SAPV) system operating under variable climatic conditions. The ANN combines the Levenberg–Marquardt algorithm (LM) with an infinite impulse response (IIR) filter in order to accelerate the convergence of the network. SAPV systems are widely used in renewable energy source (RES) applications and it is important to be able to evaluate the performance of installed systems. The modeling of the complete SAPV system is achieved by combining the models of the different components of the system (PV-generator, battery and regulator). A global model can identify the SAPV characteristics by knowing only the climatological conditions. In addition, a new procedure proposed for SAPV system sizing is presented in this work. Different measured signals of solar radiation sequences and electrical parameters (photovoltaic voltage and current) from a SAPV system installed at the south of Algeria have been recorded during a period of 5-years. These signals have been used for the training and testing the developed models, one for each component of the system and a global model of the complete system. The ANN model predictions allow the users of SAPV systems to predict the different signals for each model and identify the output current of the system for different climatological conditions. The comparison between simulated and experimental signals of the SAPV gave good results. The correlation coefficient obtained varies from 90% to 96% for each estimated signals, which is considered satisfactory. A comparison between multilayer perceptron (MLP), radial basis function (RBF) network and the proposed LM–IIR model is presented in order to confirm the advantage of this model.
URI: https://hdl.handle.net/20.500.14279/1433
ISSN: 09601481
DOI: 10.1016/j.renene.2006.01.002
Rights: © Elsevier
Type: Article
Affiliation: University Centre of Médéa 
University of Sciences and Technologies Houari Boumadiene 
Higher Technical Institute Cyprus 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

198
checked on 9 Νοε 2023

WEB OF SCIENCETM
Citations

159
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s)

497
Last Week
0
Last month
3
checked on 31 Οκτ 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα