Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/1427
Τίτλος: Different methods for modeling absorption heat transformer powered by solar pond
Συγγραφείς: Sencan, Arzu 
Kızılkan, Önder 
Bezir, Nalan Cicek 
Kalogirou, Soteris A. 
Major Field of Science: Engineering and Technology
Field Category: Mechanical Engineering
Λέξεις-κλειδιά: Solar ponds;Absorption heat transformers;Pace regression;SMO;M5 model tree;Decision table;Back propagation neural network
Ημερομηνία Έκδοσης: Μαρ-2007
Πηγή: Energy Conversion and Management, 2007, vol. 48, no. 3, pp. 724-735
Volume: 48
Issue: 3
Start page: 724
End page: 735
Περιοδικό: Energy Conversion and Management 
Περίληψη: Solar ponds are a type of solar collector used for storing solar energy at temperature below 90°C. Absorption heat transformers (AHTs) are devices used to increase the temperature of moderately warm fluid to a more useful temperature level. In this study, a theoretical modelling of an absorption heat transformer for the temperature range obtained from an experimental solar pond with dimensions 3.5 × 3.5 × 2 m is presented. The working fluid pair in the absorption heat transformer is aqueous ternary hydroxide fluid consisting of sodium, potassium and caesium hydroxides in the proportions 40:36:24 (NaOH:KOH:CsOH). Different methods such as linear regression (LR), pace regression (PR), sequential minimal optimization (SMO), M5 model tree, M5′ rules, decision table and back propagation neural network (BPNN) are used for modelling the absorption heat transformer. The best results were obtained by the back propagation neural network model. A new formulation based on the BPNN is presented to determine the flow ratio (FR) and the coefficient of performance (COP) of the absorption heat transformer. The BPNN procedure is more accurate and requires significantly less computation time than the other methods.
URI: https://hdl.handle.net/20.500.14279/1427
ISSN: 01968904
DOI: 10.1016/j.enconman.2006.09.013
Rights: © Elsevier
Attribution-NonCommercial-NoDerivs 3.0 United States
Type: Article
Affiliation: Süleyman Demirel University 
Higher Technical Institute Cyprus 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons