Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1427
DC FieldValueLanguage
dc.contributor.authorSencan, Arzu-
dc.contributor.authorKızılkan, Önder-
dc.contributor.authorBezir, Nalan Cicek-
dc.contributor.authorKalogirou, Soteris A.-
dc.date.accessioned2009-05-26T11:55:03Zen
dc.date.accessioned2013-05-17T05:22:54Z-
dc.date.accessioned2015-12-02T10:12:54Z-
dc.date.available2009-05-26T11:55:03Zen
dc.date.available2013-05-17T05:22:54Z-
dc.date.available2015-12-02T10:12:54Z-
dc.date.issued2007-03-
dc.identifier.citationEnergy Conversion and Management, 2007, vol. 48, no. 3, pp. 724-735en_US
dc.identifier.issn01968904-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1427-
dc.description.abstractSolar ponds are a type of solar collector used for storing solar energy at temperature below 90°C. Absorption heat transformers (AHTs) are devices used to increase the temperature of moderately warm fluid to a more useful temperature level. In this study, a theoretical modelling of an absorption heat transformer for the temperature range obtained from an experimental solar pond with dimensions 3.5 × 3.5 × 2 m is presented. The working fluid pair in the absorption heat transformer is aqueous ternary hydroxide fluid consisting of sodium, potassium and caesium hydroxides in the proportions 40:36:24 (NaOH:KOH:CsOH). Different methods such as linear regression (LR), pace regression (PR), sequential minimal optimization (SMO), M5 model tree, M5′ rules, decision table and back propagation neural network (BPNN) are used for modelling the absorption heat transformer. The best results were obtained by the back propagation neural network model. A new formulation based on the BPNN is presented to determine the flow ratio (FR) and the coefficient of performance (COP) of the absorption heat transformer. The BPNN procedure is more accurate and requires significantly less computation time than the other methods.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofEnergy Conversion and Managementen_US
dc.rights© Elsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectSolar pondsen_US
dc.subjectAbsorption heat transformersen_US
dc.subjectPace regressionen_US
dc.subjectSMOen_US
dc.subjectM5 model treeen_US
dc.subjectDecision tableen_US
dc.subjectBack propagation neural networken_US
dc.titleDifferent methods for modeling absorption heat transformer powered by solar ponden_US
dc.typeArticleen_US
dc.collaborationSüleyman Demirel Universityen_US
dc.collaborationHigher Technical Institute Cyprusen_US
dc.subject.categoryMechanical Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryCyprusen_US
dc.countryTurkeyen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.enconman.2006.09.013en_US
dc.dept.handle123456789/54en
dc.relation.issue3en_US
dc.relation.volume48en_US
cut.common.academicyear2007-2008en_US
dc.identifier.spage724en_US
dc.identifier.epage735en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.journal.journalissn0196-8904-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4497-0602-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 10

43
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations 20

37
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

540
Last Week
1
Last month
1
checked on Jan 3, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons