Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/14230
Τίτλος: | Modeling the structure functions in linearly forced isotropic turbulence | Συγγραφείς: | Akylas, Evangelos Gravanis, Elias Fyrillas, Marios M. Rouson, Damian I. Kassinos, Stavros C. |
Major Field of Science: | Engineering and Technology | Field Category: | Civil Engineering | Λέξεις-κλειδιά: | Turbulence;Reynolds number;Grid turbulence | Ημερομηνία Έκδοσης: | 28-Ιου-2011 | Πηγή: | 7th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2011, Ottawa Convention CentreOttawa, Canada, 28 July 2011 through 31 July 2011 | Conference: | International Symposium on Turbulence and Shear Flow Phenomena | Περίληψη: | © 2011 International Symposium on Turbulence and Shear Flow Phenomena, TSFP07. All rights reserved. The physics of the linear forcing of isotropic turbulence, allows for some useful estimates of the characteristic length scales of the turbulence produced during the statistically stationary phase. With such estimates we could practically define uniquely the stationary statistics by means of the boxsize of the simulation, the linear forcing parameter and the viscosity of each case. We use such estimations in the Karman-Howarth equation and we solve it in terms of the second and third order structure functions using a generalized Oberlack-Peters closure scheme. The resulting forms and the respective spectra are in very good agreement with experimental and DNS data. | Description: | 7th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2011,Volume 2011-July, 2011 | URI: | https://hdl.handle.net/20.500.14279/14230 | Type: | Article | Affiliation: | Cyprus University of Technology Frederick University University of Cyprus Sandia National Laboratories |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
CORE Recommender
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα