Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/13676
Τίτλος: Optimal designs for regression with spherical data
Συγγραφείς: Dette, Holger 
Konstantinou, Maria 
Schorning, Kirsten 
Gösmann, Josua 
Major Field of Science: Natural Sciences
Field Category: Mathematics
Λέξεις-κλειδιά: Hyperspherical harmonics;Optimal design;Series estimation;Φp-optimality
Ημερομηνία Έκδοσης: 2019
Πηγή: Electronic Journal of Statistics, 2019, Vol. 13, No. 1, pp. 361-390
Volume: 13
Issue: 1
Start page: 361
End page: 390
Περιοδικό: Electronic Journal of Statistics 
Περίληψη: In this paper optimal designs for regression problems with spherical predictors of arbitrary dimension are considered. Our work is motivated by applications in material sciences, where crystallographic textures such as the misorientation distribution or the grain boundary distribution (depending on a four dimensional spherical predictor) are represented by series of hyperspherical harmonics, which are estimated from experimental or simulated data. For this type of estimation problems we explicitly determine optimal designs with respect to the Φ p -criteria introduced by Kiefer (1974) and a class of orthogonally invariant information criteria recently introduced in the literature. In particular, we show that the uniform distribution on the m-dimensional sphere is optimal and construct discrete and implementable designs with the same information matrices as the continuous optimal designs. Finally, we illustrate the advantages of the new designs for series estimation by hyperspherical harmonics, which are symmetric with respect to the first and second crystallographic point group.
ISSN: 19357524
DOI: 10.1214/18-EJS1524
Rights: © Institute of Mathematical Statistics. All rights reserved.
Type: Article
Affiliation: Ruhr-Universität Bochum 
Cyprus University of Technology 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
euclid.ejs.1549681241.pdfFulltext1.63 MBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

4
checked on 6 Νοε 2023

WEB OF SCIENCETM
Citations

4
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s)

341
Last Week
0
Last month
1
checked on 31 Ιαν 2025

Download(s) 20

156
checked on 31 Ιαν 2025

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα