Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/13676
DC FieldValueLanguage
dc.contributor.authorDette, Holger-
dc.contributor.authorKonstantinou, Maria-
dc.contributor.authorSchorning, Kirsten-
dc.contributor.authorGösmann, Josua-
dc.date.accessioned2019-05-18T18:43:47Z-
dc.date.available2019-05-18T18:43:47Z-
dc.date.issued2019-
dc.identifier.citationElectronic Journal of Statistics, 2019, Vol. 13, No. 1, pp. 361-390en_US
dc.identifier.issn19357524-
dc.description.abstractIn this paper optimal designs for regression problems with spherical predictors of arbitrary dimension are considered. Our work is motivated by applications in material sciences, where crystallographic textures such as the misorientation distribution or the grain boundary distribution (depending on a four dimensional spherical predictor) are represented by series of hyperspherical harmonics, which are estimated from experimental or simulated data. For this type of estimation problems we explicitly determine optimal designs with respect to the Φ p -criteria introduced by Kiefer (1974) and a class of orthogonally invariant information criteria recently introduced in the literature. In particular, we show that the uniform distribution on the m-dimensional sphere is optimal and construct discrete and implementable designs with the same information matrices as the continuous optimal designs. Finally, we illustrate the advantages of the new designs for series estimation by hyperspherical harmonics, which are symmetric with respect to the first and second crystallographic point group.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofElectronic Journal of Statisticsen_US
dc.rights© Institute of Mathematical Statistics. All rights reserved.en_US
dc.subjectHyperspherical harmonicsen_US
dc.subjectOptimal designen_US
dc.subjectSeries estimationen_US
dc.subjectΦp-optimalityen_US
dc.titleOptimal designs for regression with spherical dataen_US
dc.typeArticleen_US
dc.collaborationRuhr-Universität Bochumen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryMathematicsen_US
dc.journalsOpen Accessen_US
dc.countryGermanyen_US
dc.countryCyprusen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1214/18-EJS1524en_US
dc.relation.issue1en_US
dc.relation.volume13en_US
cut.common.academicyear2018-2019en_US
dc.identifier.spage361en_US
dc.identifier.epage390en_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.languageiso639-1en-
crisitem.author.deptDepartment of Chemical Engineering-
crisitem.author.facultyFaculty of Geotechnical Sciences and Environmental Management-
crisitem.author.orcid0000-0002-4140-0444-
crisitem.author.parentorgFaculty of Geotechnical Sciences and Environmental Management-
crisitem.journal.journalissn1935-7524-
crisitem.journal.publisherInstitute of Mathematical Statistics-
Appears in Collections:Άρθρα/Articles
Files in This Item:
File Description SizeFormat
euclid.ejs.1549681241.pdfFulltext1.63 MBAdobe PDFView/Open
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 6, 2023

WEB OF SCIENCETM
Citations

4
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

341
Last Week
0
Last month
1
checked on Jan 31, 2025

Download(s) 20

156
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.