Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/13445
Τίτλος: | A Recurrent Latent Variable Model for Supervised Modeling of High-Dimensional Sequential Data | Συγγραφείς: | Christodoulou, Panayiotis Chatzis, Sotirios P. Andreou, Andreas S. |
metadata.dc.contributor.other: | Χατζής, Σωτήριος Π. Ανδρέου, Ανδρέας Σ. Χριστοδούλου, Παναγιώτης |
Major Field of Science: | Engineering and Technology | Field Category: | Computer and Information Sciences;Electrical Engineering - Electronic Engineering - Information Engineering | Λέξεις-κλειδιά: | Αmortized variational inference;Ηigh-dimensional sequences;Predictive modeling;Recurrent latent variable | Ημερομηνία Έκδοσης: | Ιου-2018 | Πηγή: | IEEE International Conference on Innovations in Intelligent Systems and Applications, 2018, 3-5 July , Thessaloniki, Greece | Conference: | IEEE (SMC) International Conference on Innovations in Intelligent Systems and Applications, INISTA 2018 | Περίληψη: | In this work, we attempt to ameliorate the impact of data sparsity in the context of supervised modeling applications dealing with high-dimensional sequential data. Specifically, we seek to devise a machine learning mechanism capable of extracting subtle and complex underlying temporal dynamics in the observed sequential data, so as to inform the predictive algorithm. To this end, we improve upon systems that utilize deep learning techniques with recurrently connected units; we do so by adopting concepts from the field of Bayesian statistics, namely variational inference. Our proposed approach consists in treating the network recurrent units as stochastic latent variables with a prior distribution imposed over them. On this basis, we proceed to infer corresponding posteriors; these can be used for prediction generation, in a way that accounts for the uncertainty in the available sparse training data. To allow for our approach to easily scale to large real-world datasets, we perform inference under an approximate amortized variational inference (AVI) setup, whereby the learned posteriors are parameterized via (conventional) neural networks. We perform an extensive experimental evaluation of our approach using challenging benchmark datasets, and illustrate its superiority over existing state-of-the-art techniques. | URI: | https://hdl.handle.net/20.500.14279/13445 | ISBN: | 978-1-5386-5150-6 | DOI: | 10.1109/INISTA.2018.8466296 | Rights: | © 2018 IEEE | Type: | Conference Papers | Affiliation: | Cyprus University of Technology | Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
CORE Recommender
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα