Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/13445
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorChristodoulou, Panayiotis-
dc.contributor.authorChatzis, Sotirios P.-
dc.contributor.authorAndreou, Andreas S.-
dc.contributor.otherΧατζής, Σωτήριος Π.-
dc.contributor.otherΑνδρέου, Ανδρέας Σ.-
dc.contributor.otherΧριστοδούλου, Παναγιώτης-
dc.date.accessioned2019-04-05T06:47:26Z-
dc.date.available2019-04-05T06:47:26Z-
dc.date.issued2018-07-
dc.identifier.citationIEEE International Conference on Innovations in Intelligent Systems and Applications, 2018, 3-5 July , Thessaloniki, Greeceen_US
dc.identifier.isbn978-1-5386-5150-6-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/13445-
dc.description.abstractIn this work, we attempt to ameliorate the impact of data sparsity in the context of supervised modeling applications dealing with high-dimensional sequential data. Specifically, we seek to devise a machine learning mechanism capable of extracting subtle and complex underlying temporal dynamics in the observed sequential data, so as to inform the predictive algorithm. To this end, we improve upon systems that utilize deep learning techniques with recurrently connected units; we do so by adopting concepts from the field of Bayesian statistics, namely variational inference. Our proposed approach consists in treating the network recurrent units as stochastic latent variables with a prior distribution imposed over them. On this basis, we proceed to infer corresponding posteriors; these can be used for prediction generation, in a way that accounts for the uncertainty in the available sparse training data. To allow for our approach to easily scale to large real-world datasets, we perform inference under an approximate amortized variational inference (AVI) setup, whereby the learned posteriors are parameterized via (conventional) neural networks. We perform an extensive experimental evaluation of our approach using challenging benchmark datasets, and illustrate its superiority over existing state-of-the-art techniques.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.rights© 2018 IEEEen_US
dc.subjectΑmortized variational inferenceen_US
dc.subjectΗigh-dimensional sequencesen_US
dc.subjectPredictive modelingen_US
dc.subjectRecurrent latent variableen_US
dc.titleA Recurrent Latent Variable Model for Supervised Modeling of High-Dimensional Sequential Dataen_US
dc.typeConference Papersen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.relation.conferenceIEEE (SMC) International Conference on Innovations in Intelligent Systems and Applications, INISTA 2018en_US
dc.identifier.doi10.1109/INISTA.2018.8466296en_US
cut.common.academicyear2017-2018en_US
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.openairetypeconferenceObject-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4956-4013-
crisitem.author.orcid0000-0001-7104-2097-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.author.parentorgFaculty of Engineering and Technology-
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

Page view(s) 50

320
Last Week
1
Last month
1
checked on 7 Νοε 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα