Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/12629
Τίτλος: Improving the performance of classification models with fuzzy cognitive maps
Συγγραφείς: Christodoulou, Panayiotis 
Christoforou, Andreas 
Andreou, Andreas S. 
Major Field of Science: Natural Sciences;Engineering and Technology
Field Category: Computer and Information Sciences;Electrical Engineering - Electronic Engineering - Information Engineering
Λέξεις-κλειδιά: Classification models;Fuzzy Cognitive Maps;Prediction accuracy
Ημερομηνία Έκδοσης: Ιου-2017
Πηγή: IEEE International Conference on Fuzzy Systems, 2017, Naples, Italy, 9-12 July
DOI: https://doi.org/10.1109/FUZZ-IEEE.2017.8015422
Conference: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) 
Περίληψη: This paper presents a novel approach to improve the accuracy of classification models used for prediction purposes by integrating a Fuzzy Cognitive Map (FCM) to produce a hybrid model. The proposed methodology first uses the FCM to discover latent correlations that exist between the data in order to form a single variable. This variable is then fed in the classification model as part of the training and testing phases to enhance its accuracy. Experimental results using datasets describing two different problems suggested noteworthy improvements in the accuracy of various classification models.
ISBN: 978-150906034-4
ISSN: 1558-4739
DOI: 10.1109/FUZZ-IEEE.2017.8015422
Rights: © 2017 IEEE.
Type: Conference Papers
Affiliation: Cyprus University of Technology 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 20

4
checked on 6 Νοε 2023

Page view(s) 20

369
Last Week
3
Last month
4
checked on 31 Ιαν 2025

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα