Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/12629
Τίτλος: | Improving the performance of classification models with fuzzy cognitive maps | Συγγραφείς: | Christodoulou, Panayiotis Christoforou, Andreas Andreou, Andreas S. |
Major Field of Science: | Natural Sciences;Engineering and Technology | Field Category: | Computer and Information Sciences;Electrical Engineering - Electronic Engineering - Information Engineering | Λέξεις-κλειδιά: | Classification models;Fuzzy Cognitive Maps;Prediction accuracy | Ημερομηνία Έκδοσης: | Ιου-2017 | Πηγή: | IEEE International Conference on Fuzzy Systems, 2017, Naples, Italy, 9-12 July | DOI: | https://doi.org/10.1109/FUZZ-IEEE.2017.8015422 | Conference: | IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) | Περίληψη: | This paper presents a novel approach to improve the accuracy of classification models used for prediction purposes by integrating a Fuzzy Cognitive Map (FCM) to produce a hybrid model. The proposed methodology first uses the FCM to discover latent correlations that exist between the data in order to form a single variable. This variable is then fed in the classification model as part of the training and testing phases to enhance its accuracy. Experimental results using datasets describing two different problems suggested noteworthy improvements in the accuracy of various classification models. | ISBN: | 978-150906034-4 | ISSN: | 1558-4739 | DOI: | 10.1109/FUZZ-IEEE.2017.8015422 | Rights: | © 2017 IEEE. | Type: | Conference Papers | Affiliation: | Cyprus University of Technology | Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
CORE Recommender
SCOPUSTM
Citations
20
4
checked on 6 Νοε 2023
Page view(s) 20
369
Last Week
3
3
Last month
4
4
checked on 31 Ιαν 2025
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα