Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/12629
DC FieldValueLanguage
dc.contributor.authorChristodoulou, Panayiotis-
dc.contributor.authorChristoforou, Andreas-
dc.contributor.authorAndreou, Andreas S.-
dc.date.accessioned2018-08-08T10:27:52Z-
dc.date.available2018-08-08T10:27:52Z-
dc.date.issued2017-07-
dc.identifier.citationIEEE International Conference on Fuzzy Systems, 2017, Naples, Italy, 9-12 Julyen_US
dc.identifier.isbn978-150906034-4-
dc.identifier.issn1558-4739-
dc.description.abstractThis paper presents a novel approach to improve the accuracy of classification models used for prediction purposes by integrating a Fuzzy Cognitive Map (FCM) to produce a hybrid model. The proposed methodology first uses the FCM to discover latent correlations that exist between the data in order to form a single variable. This variable is then fed in the classification model as part of the training and testing phases to enhance its accuracy. Experimental results using datasets describing two different problems suggested noteworthy improvements in the accuracy of various classification models.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.rights© 2017 IEEE.en_US
dc.subjectClassification modelsen_US
dc.subjectFuzzy Cognitive Mapsen_US
dc.subjectPrediction accuracyen_US
dc.titleImproving the performance of classification models with fuzzy cognitive mapsen_US
dc.typeConference Papersen_US
dc.doihttps://doi.org/10.1109/FUZZ-IEEE.2017.8015422en_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.countryCyprusen_US
dc.subject.fieldNatural Sciencesen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.relation.conferenceIEEE International Conference on Fuzzy Systems (FUZZ-IEEE)en_US
dc.identifier.doi10.1109/FUZZ-IEEE.2017.8015422en_US
cut.common.academicyear2016-2017en_US
item.openairetypeconferenceObject-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.languageiso639-1en-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0001-5598-8894-
crisitem.author.orcid0000-0001-7104-2097-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

4
checked on Nov 6, 2023

Page view(s) 20

369
Last Week
3
Last month
4
checked on Jan 30, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.