Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/10493
Τίτλος: A stacked generalization system for automated FOREX portfolio trading
Συγγραφείς: Petropoulos, Anastasios 
Chatzis, Sotirios P. 
Siakoulis, Vasilis 
Vlachogiannakis, Nikos 
metadata.dc.contributor.other: Χατζής, Σωτήριος Π.
Major Field of Science: Engineering and Technology
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: Forex forecasting;Algorithmic trading;Portfolio management;Machine learning;Stacked generalization
Ημερομηνία Έκδοσης: 30-Δεκ-2017
Πηγή: Expert Systems with Applications, 2017, vol. 90, pp. 290-302
Volume: 90
Start page: 290
End page: 302
Περιοδικό: Expert systems with applications 
Περίληψη: Multiple FOREX time series forecasting is a hot research topic in the literature of portfolio trading. To this end, a large variety of machine learning algorithms have been examined. However, it is now widely understood that, in real-world trading settings, no single machine learning model can consistently outperform the alternatives. In this work, we examine the efficacy and the feasibility of developing a stacked generalization system, intelligently combining the predictions of diverse machine learning models. Our approach establishes a novel inferential framework that comprises the following levels of data processing: (i) We model the dependence patterns between major currency pairs via a diverse set of commonly used machine learning algorithms, namely support vector machines (SVMs), random forests (RFs), Bayesian autoregressive trees (BART), dense-layer neural networks (NNs), and naive Bayes (NB) classifiers. (ii) We generate implied signals of exchange rate fluctuation, based on the output of these models, as well as appropriate side information obtained by analyzing the correlations across currency pairs in our training datasets. (iii) We finally combine these implied signals into an aggregate predictive waveforth, by leveraging majority voting, genetic algorithm optimization, and regression weighting techniques. We thoroughly test our framework in real-world trading scenarios; we show that our system leads to significantly better trading performance than the considered benchmarks. Thus, it represents an attractive solution for financial firms and corporations that perform foreign exchange portfolio management and daily trading. Our system can be used as an integrated part in international commercial trade activities or in a quantitative investing framework for algorithmic trading and carry-trade speculation.
URI: https://hdl.handle.net/20.500.14279/10493
ISSN: 09574174
DOI: 10.1016/j.eswa.2017.08.011
Rights: © Elsevier
Type: Article
Affiliation: Cyprus University of Technology 
Bank of Greece 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 10

30
checked on 9 Νοε 2023

WEB OF SCIENCETM
Citations 10

25
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s)

495
Last Week
4
Last month
5
checked on 3 Ιαν 2025

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα