Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/9160
Τίτλος: | Effects of porosity distribution and porosity volume fraction on the electromechanical properties of 3-3 piezoelectric foams | Συγγραφείς: | Nguyen, B. V. Challagulla, Krishna S. Venkatesh, T. A. Hadjiloizi, Demetra Georgiades, Tasos |
metadata.dc.contributor.other: | Γεωργιάδης, Τάσος | Major Field of Science: | Engineering and Technology | Field Category: | Mechanical Engineering | Λέξεις-κλειδιά: | Figures of merit;Foams;Finite element models;Porous piezoelectric materials | Ημερομηνία Έκδοσης: | 15-Νοε-2016 | Πηγή: | Smart Materials and Structures,2016, vol. 25, no. 12 | Volume: | 25 | Issue: | 12 | DOI: | 10.1088/0964-1726/25/12/125028 | Περιοδικό: | Smart Materials and Structures | Περίληψη: | Unit-cell based finite element models are developed to completely characterize the role of porosity distribution and porosity volume fraction in determining the elastic, dielectric and piezoelectric properties as well as relevant figures of merit of 3-3 type piezoelectric foam structures. Eight classes of foam structures which represent structures with different types and degrees of uniformity of porosity distribution are identified; a Base structure (Class I), two H-type foam structures (Classes II, and III), a Cross-type foam structure (Class IV) and four Line-type foam structures (Classes V, VI, VII, and VIII). Three geometric factors that influence the electromechanical properties are identified: (i) the number of pores per face, pore size and the distance between the pores; (ii) pore orientation with respect to poling direction; (iii) the overall symmetry of the pore distribution with respect to the center of the face of the unit cell. To assess the suitability of these structures for such applications as hydrophones, bone implants, medical imaging and diagnostic devices, five figures of merit are determined via the developed finite element model; the piezoelectric coupling constant (K t), the acoustic impedance (Z), the piezoelectric charge coefficient (d h), the hydrostatic voltage coefficient (g h), and the hydrostatic figure of merit (d h g h). At high material volume fractions, foams with non-uniform Line-type porosity (Classes V and VII) where the pores are preferentially distributed perpendicular to poling direction, are found to exhibit the best combination of desirable piezoelectric figures of merit. For example, at about 50% volume fraction, the d h, g h, and d h g h figures of merit are 55%, 1600% and 2500% higher, respectively, for Classes V and VII of Line-like foam structures compared with the Base structure. | URI: | https://hdl.handle.net/20.500.14279/9160 | ISSN: | 09641726 | DOI: | 10.1088/0964-1726/25/12/125028 | Rights: | © IOP Publishing | Type: | Article | Affiliation: | Universite Laurentienne Stony Brook University Cyprus University of Technology |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα