Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/9006
Τίτλος: Software defect prediction using doubly stochastic Poisson processes driven by stochastic belief networks
Συγγραφείς: Andreou, Andreas S. 
Chatzis, Sotirios P. 
metadata.dc.contributor.other: Ανδρέου, Ανδρέας
Χατζής, Σωτήριος
Major Field of Science: Engineering and Technology
Field Category: Electrical Engineering - Electronic Engineering - Information Engineering
Λέξεις-κλειδιά: Doubly stochastic Poisson process;Stochastic belief network;Sampling importance resampling;Software defect prediction
Ημερομηνία Έκδοσης: 1-Δεκ-2016
Πηγή: Journal of Systems and Software, 2016, vol 122, pp. 72-82
Volume: 122
Start page: 72
End page: 82
Περιοδικό: Journal of Systems and Software 
Περίληψη: Accurate prediction of software defects is of crucial importance in software engineering. Software defect prediction comprises two major procedures: (i) Design of appropriate software metrics to represent characteristic software system properties; and (ii) development of effective regression models for count data, allowing for accurate prediction of the number of software defects. Although significant research effort has been devoted to software metrics design, research in count data regression has been rather limited. More specifically, most used methods have not been explicitly designed to tackle the problem of metrics-driven software defect counts prediction, thus postulating irrelevant assumptions, such as (log-)linearity of the modeled data. In addition, a lack of simple and efficient algorithms for posterior computation has made more elaborate hierarchical Bayesian approaches appear unattractive in the context of software defect prediction. To address these issues, in this paper we introduce a doubly stochastic Poisson process for count data regression, the failure log-rate of which is driven by a novel latent space stochastic feedforward neural network. Our approach yields simple and efficient updates for its complicated conditional distributions by means of sampling importance resampling and error backpropagation. We exhibit the efficacy of our approach using publicly available and benchmark datasets.
URI: https://hdl.handle.net/20.500.14279/9006
ISSN: 01641212
DOI: 10.1016/j.jss.2016.09.001
Rights: © Elsevier
Type: Article
Affiliation: Cyprus University of Technology 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

19
checked on 9 Νοε 2023

WEB OF SCIENCETM
Citations 50

13
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s)

430
Last Week
1
Last month
4
checked on 23 Δεκ 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα