Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/8620
Τίτλος: Relationship between MODIS based Aerosol Optical Depth and PM10 over Croatia
Συγγραφείς: Grgurić, Sanja 
Križan, Josip 
Gašparac, Goran 
Antonić, Oleg 
Špirić, Zdravko 
Mamouri, Rodanthi-Elisavet 
Christodoulou, Andri 
Nisantzi, Argyro 
Agapiou, Athos 
Themistocleous, Kyriacos 
Kurt, Fedra 
Panayiotou, Charalambos 
Hadjimitsis, Diofantos G. 
Major Field of Science: Engineering and Technology
Field Category: Environmental Engineering
Λέξεις-κλειδιά: MODIS AOD;PM10;PM10-AOD relationship;Aerosol;Multivariate linear regression;Artificial neural network;Croatia
Ημερομηνία Έκδοσης: Μαρ-2014
Πηγή: Central European Journal of Geosciences, 2014, vol. 6, no. 1, pp. 2-16
Volume: 6
Issue: 1
Start page: 2
End page: 16
Περιοδικό: Central European Journal of Geosciences 
Περίληψη: This study analyzes the relationship between Aerosol Optical Depth (AOD) obtained from Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and ground-based PM10 mass concentration distribution over a period of 5 years (2008–2012), and investigates the applicability of satellite AOD data for ground PM10 mapping for the Croatian territory. Many studies have shown that satellite AOD data are correlated to ground-based PM mass concentration. However, the relationship between AOD and PM is not explicit and there are unknowns that cause uncertainties in this relationship. The relationship between MODIS AOD and ground-based PM10 has been studied on the basis of a large data set where daily averaged PM10 data from the 12 air quality stations across Croatia over the 5 year period are correlated with AODs retrieved from MODIS Terra and Aqua. A database was developed to associate coincident MODIS AOD (independent) and PM10 data (dependent variable). Additional tested independent variables (predictors, estimators) included season, cloud fraction, and meteorological parameters — including temperature, air pressure, relative humidity, wind speed, wind direction, as well as planetary boundary layer height — using meteorological data from WRF (Weather Research and Forecast) model. It has been found that 1) a univariate linear regression model fails at explaining the data variability well which suggests nonlinearity of the AOD-PM10 relationship, and 2) explanation of data variability can be improved with multivariate linear modeling and a neural network approach, using additional independent variables.
URI: https://hdl.handle.net/20.500.14279/8620
ISSN: 18961517
DOI: 10.2478/s13533-012-0135-6
Rights: © Springer International Publishing AG,
Type: Article
Affiliation: Cyprus University of Technology 
Gekom — Geophysical and ecological modeling Ltd.,Institute of Applied Ecology 
Environmental Software & Services GmbH 
Atlantis Consulting Cyprus Ltd 
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

23
checked on 6 Νοε 2023

WEB OF SCIENCETM
Citations

16
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s)

465
Last Week
3
Last month
6
checked on 3 Ιαν 2025

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα