Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/8589
Τίτλος: | Robust Sequential Data Modeling Using an Outlier Tolerant Hidden Markov Model | Συγγραφείς: | Chatzis, Sotirios P. Kosmopoulos, Dimitrios Varvarigou, Theodora |
Major Field of Science: | Engineering and Technology | Field Category: | Electrical Engineering - Electronic Engineering - Information Engineering | Λέξεις-κλειδιά: | Hidden Markov models;Face and gesture recognition;Machine learning;Markov processes;Multivariate statistics;Signal processing;Statistical;Expectation-maximization;Factor analysis;Sequential data modeling;Student's t-distribution | Ημερομηνία Έκδοσης: | Σεπ-2009 | Πηγή: | IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, vol. 31, no. 9, pp. 1657-1669 | Περιοδικό: | IEEE Transactions on Pattern Analysis and Machine Intelligence | Περίληψη: | Hidden Markov (chain) models using finite Gaussian mixture models as their hidden state distributions have been successfully applied in sequential data modeling and classification applications. Nevertheless, Gaussian mixture models are well known to be highly intolerant to the presence of untypical data within the fitting data sets used for their estimation. Finite Student's t-mixture models have recently emerged as a heavier-tailed, robust alternative to Gaussian mixture models, overcoming these hurdles. To exploit these merits of Student's t-mixture models in the context of a sequential data modeling setting, we introduce, in this paper, a novel hidden Markov model where the hidden state distributions are considered to be finite mixtures of multivariate Student's t-densities. We derive an algorithm for the model parameters estimation under a maximum likelihood framework, assuming full, diagonal, and factor-analyzed covariance matrices. The advantages of the proposed model over conventional approaches are experimentally demonstrated through a series of sequential data modeling applications. | URI: | https://hdl.handle.net/20.500.14279/8589 | ISSN: | 19393539 | DOI: | 10.1109/TPAMI.2008.215 | Rights: | © IEEE | Type: | Article | Affiliation: | University of Miami National Technical University Of Athens NCSR Demokritos |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
98
checked on 6 Νοε 2023
WEB OF SCIENCETM
Citations
85
Last Week
0
0
Last month
0
0
checked on 29 Οκτ 2023
Page view(s) 50
358
Last Week
0
0
Last month
2
2
checked on 22 Δεκ 2024
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα