Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/8206
Title: A partially-observable markov decision process for dealing with dynamically changing environments
Authors: Chatzis, Sotirios P. 
Kosmopoulos, Dimitrios I. 
Major Field of Science: Engineering and Technology
Field Category: Computer and Information Sciences
Keywords: POMDP problem;Bayesian non-parametrics;Dirichlet process
Issue Date: 2014
Source: 10th International Conference on Artificial Intelligence Applications and Innovations, 2014, Rhodes, Greece, 19-21 September, pp. 111-120
Conference: IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations 
Abstract: This paper offers a solution to the non-stationary POMDP problem, by making use of methods and concepts from the field of Bayesian non-parametrics, specifically dynamic hierarchical Dirichlet process priors. We combine block Gibbs sampling and importance sampling to perform inference. We evaluate the method in several benchmark policy learning tasks
Description: Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, vol. 436).
URI: https://hdl.handle.net/20.500.14279/8206
ISBN: 978-3-662-44654-6 (online)
978-3-662-44653-9 (print)
DOI: 10.1007/978-3-662-44654-6_11
Type: Conference Papers
Affiliation : Cyprus University of Technology 
Hellenic Mediterranean University 
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation

CORE Recommender
Show full item record

SCOPUSTM   
Citations 50

1
checked on Nov 6, 2023

Page view(s) 50

435
Last Week
0
Last month
5
checked on Nov 6, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.