Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/4499
Τίτλος: | The application of the covariance matrix statistical method for removing atmospheric effects from satellite remotely sensed data intended for environmental applications | Συγγραφείς: | Hadjimitsis, Diofantos G. Clayton, Chris R I |
metadata.dc.contributor.other: | Χατζημιτσής, Διόφαντος Γ. | Major Field of Science: | Engineering and Technology | Field Category: | Civil Engineering | Λέξεις-κλειδιά: | Remote sensing;Statistical methods;Satellites | Ημερομηνία Έκδοσης: | 2007 | Πηγή: | Proceedings of SPIE - The international society for optical engineering, 2007, vol. 6749, no. 674936 | Volume: | 6749 | Issue: | 674936 | Περίληψη: | The Covariance Matrix Method (CMM) uses the statistical relationship between all the selected bands of a satellite sensor simultaneously, rather than one at a time as in the regression method. It examines the set of variances and covariance between all band pairs in the image data and CMM provides an average pixel correction for a specified part of a satellite image. It is necessary to know a priori a value for the atmospheric path radiance on one spectral band. From this, CMM enables the estimation of the atmospheric path radiances in all the other bands. Dark pixels must be present in the CMM technique. Indeed, the authors suggest an improved CMM atmospheric correction algorithm. This methodology has been presented as an improved revised version of the CMM atmospheric approach. The authors provide a critical assessment of the suitability of the CMM atmospheric correction using Landsat TM image data of an area consisting low reflectance targets that have been used for several environmental monitoring applications. The proposed improved method produces retrieved surface reflectance within the range of the ground measurements | URI: | https://hdl.handle.net/20.500.14279/4499 | ISSN: | 0277786X | DOI: | 10.1117/12.751887 | Rights: | © SPIE | Type: | Article | Affiliation: | University of Southampton Cyprus University of Technology |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
4
checked on 9 Νοε 2023
Page view(s)
604
Last Week
0
0
Last month
32
32
checked on 14 Μαρ 2025
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα