Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/4206
Title: AI-based low computational power actuator/sensor fault detection applied on a MAGLEV suspension
Authors: Michail, Konstantinos 
Tzafestas, Spyros G. 
Zolotas, Argyrios C. 
Deliparaschos, Kyriakos M. 
Major Field of Science: Engineering and Technology
Field Category: Mechanical Engineering
Keywords: Artificial intelligence;Electromagnetic actuators;Fault diagnosis;Magnetic levitation;Neural nets;Observers;Suspensions (mechanical components)
Issue Date: 2013
Source: 21st Mediterranean Conference on Control & Automation (MED) , pp.1127,1132, 25-28 June 2013
Link: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6608862&isnumber=6608682
Conference: Mediterranean Conference on Control & Automation (MED) 
Abstract: A low computational power method is proposed for detecting actuators/sensors faults. Typical model-based fault detection units for multiple sensor faults, require a bank of observers (these can be either conventional observers of artificial intelligence based). The proposed control scheme uses an artificial intelligence approach for the development of the fault detection unit abbreviated as `iFD'. In contrast with the bank-of-estimators approach, the proposed iFD unit employs a single estimator for multiple sensor fault detection. The efficacy of the scheme is illustrated on an Electromagnetic Suspension system example with a number of sensor fault scenaria.
ISBN: 978-1-4799-0995-7
DOI: 10.1109/MED.2013.6608862
Rights: IEEE Xplore
Type: Conference Papers
Affiliation : Cyprus University of Technology 
National and Kapodistrian University of Athens 
University of Sussex 
Publication Type: Peer Reviewed
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation

Files in This Item:
File Description SizeFormat
AI-based.pdf500.74 kBAdobe PDFView/Open
CORE Recommender
Show full item record

SCOPUSTM   
Citations 50

3
checked on Nov 6, 2023

Page view(s) 50

461
Last Week
0
Last month
3
checked on Jan 8, 2025

Download(s) 50

180
checked on Jan 8, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.