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Abstract— A low computational power method is proposed
for detecting actuators/sensors faults. Typical model-based fault
detection units for multiple sensor faults, require a bank
of observers (these can be either conventional observers of
artificial intelligence based). The proposed control scheme uses
an artificial intelligence approach for the development of the
fault detection unit abbreviated as ‘iFD’. In contrast with the
bank-of-estimators approach, the proposed iFD unit employs a
single estimator for multiple sensor fault detection. The efficacy
of the scheme is illustrated on an Electromagnetic Suspension
system example with a number of sensor fault scenaria.

I. INTRODUCTION

Modern industrial systems require careful design as per-
formance and reliability standards are demanding while cost
is an important constraint. A trade-off between economical
design in one hand and system performance and reliabilities
in the other exists, in which engineers have to take into con-
sideration in order to obtain the most appropriate solution.
In addition, reliability issues is an important area to consider
during design, as it is vital in many applications in terms of
system safety, e.g. public transportation systems. Failure of
such systems, referred to as safety-critical systems, is not an
option hence the scientific community developed methods of
fault tolerance.

Fault Tolerant Control (FTC) Systems aim to reduce cost
while maintain high reliability. Some small but expensive
systems (eg. Unmanned Aerial Vehicles [1]) have limited
computational resources which makes it difficult to achieve
fault tolerance as they require respectable computational
power. This paper deals with two vital and vulnerable com-
ponents of such control systems, the actuators and sensors.
In the case that one or more of such devices fail during
operation the system can go unstable therefore immediate
remedial actions have to be taken right after the fault occurs
in order to maintain stability (even if the performance have to
degrade), this being a distinct characteristic of FTC system
behaviour.

FTC systems classification falls in two categories, i.e.
Passive Fault Tolerant Control (PFTC) and Active Fault
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Bank of Estimators

Fig. 1. Actuator/sensor fault detection with typical bank of estimators
(dotted lines) and the proposed iFD (straight line).

Tolerant Control (AFTC) [2]. In the former case a prior
knowledge of the fault is required in order to design a
controller insensitive to faults that are taken into considera-
tion, while in the latter case proposed in this paper, a Fault
Detection and Isolation (FDI) mechanism is required com-
bined with a variable structure controller. When one or more
actuator/sensor faults occur, the FDI unit detects, isolates and
instructs the controller to reconfigure itself. Reconfigurable
FTC control gained a lot of intention over the past years due
to the necessity to design reliable control systems with lower
cost [3]. The FDI mechanism first receives data both from
the sensor and the actuator and based on that information is
able to distinguish which is(are) the faulty one(s), and then it
isolates and reconfigures the controller in order to maintain
performance using the remaining healthy actuator/sensors.
Some other approaches are using information from the
remaining healthy sensors in order to reconstruct the lost
signal from the impaired sensor(s), see [4]. Such methods
include the use of a bank of Neural Networks (NNs) or
Kalman Estimators (KE) [5], [6] with both proving useful
when aiming to avoid sensor redundancy. In contrast to the
KEs approach, NNs have increased False Alarm Rates (FAR)
due to the fact that they are able to estimate the faults,
however, they are still used because they can be designed
without having precise knowledge of the model of the system
under test, see [7], [8], [9], [10].

In any case, if there are many actuators/sensors, a bank of
estimators needs to be designed in order to detect multiple
faults. This is depicted in Fig. 1 with dotted lines. Hence,
if fault tolerance is to be considered, the control design be-
comes more complex and requires additional computational
power. The contribution of this work lies on the fact that a
low computational cost FDI mechanism based on Artificial
Intelligence (AI), specifically a neural network, is presented
reducing the complexity and computational power of a bank-
based FD i.e., the bank of the estimators is replaced with one



estimator which is able to perform similar to the bank-based
FD but with lower computational cost. The presented work
is an extension of the work presented in [11].

The proposed FD mechanism, abbreviated as iFD, is tested
on a safety-critical system, the MAGLEV Electro-Magnetic
Suspension (EMS) system that is inherently unstable with
non-trivial control requirements and non-linear characteris-
tics [12].

The rest of this paper is organized as follows: Section II
describes the working principle of the iFD and the key points
relating to train it, Section III outlines the NN algorithm
that is used, while Section IV the basics on modelling issues
and how this is combined with iFD. Analysis of simulation
results and conclusions are presented in Sections V and VI,
respectively.

II. THE PROPOSED i-FAULT DETECTION SCHEME

The FD unit is used to detect actuator/sensor faults and
instruct for controller reconfiguration. The proposed FD
scheme is based on NN and the principle of operation is
illustrated in Fig 3. Any typical industrial system has a set
of inputs (control signals) and a set of outputs (measurement
signals). In practice, the inputs are driven by a set of actua-
tors, U , and the outputs (measurement signals) are given by a
set of sensors, Y . The design engineer uses U and Y to design
a controller with which a desired closed-loop performance
is achieved (controller is not depicted on the particular
diagram). In that sense the control and measurement signals
refer to actuators and sensors respectively. When the actuator
or the sensor is impaired, those signals are distorted leading
to performance degradation or even instability of the closed-
loop. The sets of actuators and sensors are defined as U =
[u1, u2, . . . unu ] and Y = [y1, y2, . . . uny ]. Where ui, yi
and nu and ny are the ith actuator and sensor, and the
total number of actuators and sensors, respectively. Since
faults may occur in any of the aforementioned parts, the
mechanism employed to detect the faults is comprised of
a NN-based estimator, a Residual Generator (RG) and a
Decision Mechanism (DM).

The estimator is trained (this is the key point of the
proposed method which is explained later in this section) in
order to estimate the U and Y . The input to the estimator is
obtained from the so called Binary Switches (BS). The BS
have three inputs; one represents the real measured values
of the U and Y and the other comes from the functions
Cui and Cyi defined as Cui = [cu1 , cu2 . . . cunu

] and Cyi =
[cy1 , cy2 . . . cyny

]. Cui and Cyi are two arrays that contains
predefined functions that are used during the training and
operation of the iFD. Since these values are application
dependent there is no systematic way to calculate them,
therefore the designer has to figure them out from experience.
The third input (ISui,yi) is a binary input which controls
switching between the inputs eg. from u1 to cu1 . A typical
example is given in Fig. 2. The output yBSi of the BS is
given by:

yBSi = {yi,ifIS=1
cyi ,ifIS=0 (1)

Fig. 2. Diagram of a binary switch (BSi).
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Fig. 3. The block diagram of the proposed AI-based iFD unit.

The RG, reads the estimated actuators/sensors signals and
compares these with the real ones. Several different methods
exist in the literature for the residual generation, with the
choice in this paper being the moving average filter, defined
as follows:

ri =

i∑
i−(N−1)

(yi − ŷi)
2

N
(2)

where ri is the residual, yi and ŷi are the real and estimated
signals (for the actuators the y is replaced by u) and N is
the total number of the past samples. The particular filter
is useful because is able to accommodate the noise coming
from the sensors reducing the FAR. The decision mechanism,
decides whether one or more devices are faulty. The engineer
has to define thresholds for each residual, while the DM will
decide whether a device is faulty or not. Threshold selection
is a non-trivial task to perform because on one hand affects
the sensitivity of the DM to fault detection and on the other
hand, it affects the FAR. Taking into account the property
of the AI nature of the iFD which is able to estimate the
faults, the threshold selection needs to be done very carefully.
This is a field that gains a lot of attention but is beyond the
scope of this paper. Another signal at the output of the DM
is the Reconfiguration Signal (RS) which is basically the
corresponding identifier for the controller reconfiguration.

In conclusion, the proposed iFD works as follows:
• At first, assuming a normal situation, the actuator and

sensors signals are accurately estimated and then are fed
into the residual generator. Subsequently, the generator
calculates the residual (this corresponds to a very small
value at normal operation) for each actuator/sensor and
feeds it to the DM. Lastly, the DM will produce the IS
and RS signals (the IS signals in a healthy situation are
all 1).



TABLE I
STRUCTURE OF THE DATA USED FOR THE iFD TRAINING.

Sensor Set Measured Estimated
Status

y1 y2 y3 y4 uc ŷ1 ŷ3 ŷ4
i (zt − z) ż z̈ uc î ˆ̇z ˆ̈z

Healthy D1
y1
1

D1
y1
2

D1
y1
3

D1
y1
4

D1
u1
y1,y2,y3,y4

D1
ŷ1
1

D1
ŷ1
3

D1
ŷ1
4

Set
...

...
...

...
...

...
...

...
D1

yk
1

D1
yk
2

D1
yk
3

D1
yk
4

D1
uk
y1,y2,y3,y4

D1
ŷk
1

D1
ŷk
3

D1
ŷk
4

Faulty c11 D2
y1
2

D2
y1
3

D2
y1
4

D2
u1
y2,y3,y4

c11 D2
ŷ1
3

D2
ŷ1
4

y1
...

...
...

...
...

...
...

...
c1k D2

yk
2

D2
yk
3

D2
yk
4

D2
uk
y2,y3,y4

c1k D2
ŷk
3

D2
ŷk
4

Faulty c11 D3
y1
2

c31 D3
y1
4

D3
u1
y2,y4

c11 c31 D3
ŷ1
4

y1, y3
...

...
...

...
...

...
...

...
c1k D3

yk
2

c3k D3
yk
4

D3
uk
y2,y4

c1k c3k D3
ŷk
4

Faulty c11 D4
y1
2

c31 c41 D4
u1
y2

c11 c31 c41

y1, y3, y4
...

...
...

...
...

...
...

...
c1k D4

yk
2

c3k c4k D4
uk
y2

c1k c3k c4k

k is the total number of all samples in the training data set

• As a consequence of one or more actuators/sensors
failure, the corresponding residuals will start increasing.
In this case the DM will detect the change by comparing
the residuals with the thresholds. Next, the ISs will
change in order to instruct the corresponding BS to
modify the output to ci, while the RS will take the
necessary value and pass it to the controller for the
reconfiguration to take place. In this stage the BSs will
also isolate the signals of the faulty devices from the
estimator so that the latter ”sees” some ”known” data
based on its trained knowledge.

• Lastly, the controller will reconfigure itself and the
stability and performance will be maintained.

A. The iFD unit training: obtaining the learning set

The key point here is the method by which the estimator
of the iFD mechanism is been trained. In order to train the
iFD unit, data sets have to be taken using the various sub-
sets of the selected sensor set, Yo. The collected data sets
are then packed together in the format shown on Table I.
The measurements from each sensor set, form the overall
data set D that is listed for each sensor set. In places where
the sensor(s) is(are) assumed to be faulty, a known input ci,
is given by the user. Following this manner the iFD learns
to respond to sensor faults in such a way that the iFD unit
itself continually check for faults of the full sensor set and
its sub-sets.

The training procedure of the iFD unit synopsises to the
following steps:

• Collect the input-output data from the closed-loop sys-
tem using each sensor set.

• Decide which function to use for each actua-
tor/sensor(i.e. decide the Cui , Cyi).

• Merge the data with the functions as shown on Table I.
• Train the iFD using one of the available NN algorithms.

Note that for the MAGLEV suspension the particular table
has to be formed twice, namely one for its deterministic and
one for its stochastic response.

Input layer Hidden layer Output layer

Δ

Hidden neuron

Output neuron

Neurons

Fig. 4. The Neural network architecture for the iFD.

III. THE NEURAL NETWORK ALGORITHM

A dynamic nonlinear input-output time delay NN (TDNN)
model was used for time-series prediction. The neural net-
work’s main work is to perform similarly as a bank of KE
in the feedback loop and to predict future values based on
past values of one or more time series. More specifically, to
predict y(t) series based on n past values of x(t) series such
that y(t) = f(x(t − 1), ..., x(t − n)). It is obvious that the
NN structure in this application significantly simplifies the
feedback scheme in terms of filter resources and reduces the
computational complexity, plus it makes the feedback loop
less error prone.

The EMS system has one input and five outputs that are
fed into the NN (the input voltage u and the outputs: current
i, airgap (zt−z), vertical velocity ż and vertical acceleration
z̈). The NN is trained in order to estimate i, ż and z̈
symbolised as î, ˆ̇z and ˆ̈z. The NNs architecture is similar
to a feedforward structure with the addition of delays in the
hidden layer. Its internal architecture is realised as a hidden
layer (with one delay and 20 hidden neurons) and an output
layer with sigmoid and linear functions respectively (see
Fig.). A fast convergence method for training moderate sized
feed-forward neural networks is the Levenberg-Marquardt
backpropagation [13] (also see Ch. 11 and 12 of [14])
algorithm which was used as the training method for the NN
in order to fit the inputs and targets. The training data were
collected in an online model working state using sub-sets
of the full sensor set (with appropriately tuned controllers
in the feedback loop) in equal time windows (T = 6.6s)
with 1kHz sampling time. The control design method used
is the well-known H∞ Loop-Shaping Designed Procedure
(LSDP). The resulting dimensions of the training sets are:
52808×5 for the inputs and 52808×3 for the outputs (2 sets
of data are merged, one for the deterministic and one for the
stochastic response of the suspension). The stopping criteria
set to a Mean Square Error (MSE≤ 10−5) or a maximum
number of epochs=103. The structure of the training data is
explained next.

IV. THE CASE STUDIED: EMS SYSTEM

A. Modelling the EMS

The single-stage, one degree-of-freedom model of the
EMS system represents a quarter of a typical MAGLEV



vehicle. The EMS is a non-linear, inherently unstable, safety-
critical system with non-trivial control requirements. Due to
space constraints only the basic information given about the
EMS modelling. Nevertheless, the interested reader can refer
to Michail(2009) [15] for the rigorous analysis.

The state space equations expressing the linearised model
as extracted from the non-linear counterpart using the small
variations around the operating point approach are given by:

ẋ = Ax+Buc
uc +Bżt żt, y = Cx (3)

A is the state matrix with the state vector given as x =
[i ż (zt − z)]T , where i is the current, ż the vertical
velocity and (zt−z) the airgap to be controlled (with zt being
the rail’s position and z the electromagnet’s position), żt is
the velocity of the track input and uc is the control (voltage)
input. Buc is the input matrix, Bżt is the disturbance matrix
and C is the output matrix with the measurements given
as: i, (zt − z), ż, z̈ (z̈ is the vertical acceleration). Matrices
A,Buc ,Bżt and C are given as

A =

 −4.762 −634.9 0
1.962 0 −1308
0 −1 0

 (4)

Buc
=

[
0.4762 0 0

]T
, Bżt =

[
634.9 0 1

]T
(5)

C =


1 0 0
0.1 0 −66.67
0 0 1
0 1 0

1.962 0 −1308

 (6)

The basic variables that give the non-linear characteristics
of the EMS are namely: the force F , the flux density B,
the airgap G and the coil’s current I [16]. The values of
these for a quarter car vehicle with Ms = 1000kg are given
as Fo = 9810N,Go = 15mm,Bo = 1T, Io = 10A with
an operating voltage of Vo = 100V . The parameters of the
electromagnet are specifically: Number of turns Nc = 2000,
coil’s resistance Rc = 10Ω, coil’s inductance Lc = 0.1H
and the pole face area Ap = 0.01m2.

Two types of disturbances exist in the vertical direction at
the input żt, the first one is caused by the gradients onto the
track and the other one originates from the track irregularities
and unevenness of the track during the installation. Stochastic
Inputs: The stochastic inputs are random variations of the rail
position as the vehicle moves along the track. Considering
the vertical direction, the velocity variations (żt) can be ap-
proximated by a double-sided power spectrum density (PSD)
and the corresponding autocorrelation function assuming a
vehicle velocity, Vv of 15m/s and track roughness, Ar =
1× 10−7 [15]. Deterministic Input: The main deterministic
input to the suspension in the vertical direction is due to
the transition onto a gradient of the rail. In this work, the
deterministic input is a rail gradient of 5% at a vehicle speed
of 15m/s, an acceleration of 0.5m/s2 and a jerk of 1m/s3

as shown in Fig. 5 [15].
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The control design requirements of an EMS system depend
upon the type and speed of the train [17]. Typically, the EMS
should be able to follow the gradient onto the rail (deter-
ministic input) while at the same time reject the inputs from
the random variations of the rail. The control performance
requirements of the EMS with deterministic and stochastic
inputs are listed on Table II.

TABLE II
CONTROL CONSTRAINTS FOR THE ELECTRO-MAGNETIC SUSPENSION.

Control requirements Value
Stochastic RMS acceleration,z̈rms ≤ 0.5ms−2

track RMS airgap variation,(zt − z)rms ≤ 5mm
profile RMS control effort,ucrms ≤ 300V

Deterministic Maximum airgap deviation,(zt − z)p ≤ 7.5mm
track Maximum control effort,ucp ≤ 300V

profile Settling time, ts ≤ 3s
Airgap steady state error,e(zt−z)ss = 0

B. The iFD applied on the EMS system

This iFD is combined with the FTC system of the suspen-
sion as illustrated in Fig. 6. A bank of H∞ LSDP designed
controllers is used for the accommodation of sensor faults.
The EMS system has a total of 5 sensors from where 4
are used for control i.e. Yo = {i, (zt − z), ż, z̈}. There are
different sensor fault combinations that could occur, totally
24 − 1 = 15. However, since the LSDP method requires
the airgap as a standard measurement, the total sensor fault
combinations that could happen reduces to 23 − 1 = 7.
Therefore, 7 H∞ loop-shaping designed controllers are used
to cover the sensor faults. When one or more sensors fail, the
fault is detected, isolated and a new controller is introduced
in the loop which is tuned a priori as explained in Section II.
For the demonstration of the iFD the results from [18] are
used.
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Fig. 8. Current sensor fault profiles

C. Sensor Fault Scenaria

When a sensor fails, its output can be unpredictable. The
sensor faults are separated into additive and multiplicative
categories. Three types of faults belong to each category: (i)
abrupt or step-type fault, (ii) incipient or soft fault and (iii)
indeterminate fault (see Fig. 7).

The faults considered here are additive and multiplicative
faults, both abrupt type. In total, there are 4 sensors in
the selected sensor set, but the assumption is that only
3 can fail, the current i, the vertical velocity ż and the
vertical acceleration z̈. Both the abrupt/multiplicative and
abrupt/additive sensor fault profiles for the current (i) sensor
are illustrated in Fig. 8. Both faults occur at 1s (see point
A on the figures). Figure 8(a) depicts the current sensor that
is suddenly damaged at 1s and its output becomes 5 times
larger than the normal. In Fig. 8(b) the impaired sensor gives
the normal current value superimposed with a simulation low
frequency random signal.

V. SIMULATION AND DATA ANALYSIS

In order to show the effectiveness of the proposed iFD
unit a summary and the main points are provided in this
section. The following scenario is selected for the seek of
the detailed explanation on the iFD working principle:

• Three sensors are impaired with a time difference as
follows: accelerometer at 0.5s, velocity at 1.5s and
current at 2s),

• the deterministic disturbance to the suspension is used
and

• an abrupt/multiplicative type of fault is injected for each
sensor at each time instant mentioned above (eg. see
Fig. 8(a)).

The airgap sensor output in the case of such a fault
profile is depicted in Fig.9. The figure illustrates the airgap
with fault-free case (i.e. healthy sensor set) and under the
fault scenario mentioned. The acceleration sensor is impaired
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Fig. 9. Airgap sensor signal with fault-free and with the fault scenario,
id:8 of Table III.
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at 0.5s (point A) and immediately afterwards a controller
reconfiguration follows, where a new controller is introduced
in the loop in order to maintain the stability and performance
of the EMS. Both fault-free and fault conditions comply with
the EMS requirements as described in Section IV. As a result
of this fault, the velocity sensor fails (point B) together with
the current sensor at (point C). All three subsequent faults
are successfully detected and accommodated.

The sensor fault accommodation is done in three steps. To
assist in explaining the steps of the procedure, the current
sensor fault will be interpreted: (i) Sensor Fault Detection,
i.e. when the fault occurs the residual of the current measure-
ment ri, starts increasing and as soon as it pass the threshold
(see Fig. 10) the fault is detected. (ii) Fault Isolation: At this
stage the faulty sensor is removed from the loop using a BS
while a ’known’ function ci = 0 is connected at the input
of the iFD. Figure 11 clearly shows the signal at the input
and output of the BS as well as the signal at the output
of the iFD. (iii) Controller reconfiguration: After the faulty
sensor isolation a reconfiguration signal is generated and a
new controller is introduced in the loop.

Close investigation of Fig. 11 after the fault occurs at
point A, shows that the iFD detects the fault after a few
time steps, while in the next time step the iFD reacts and
drives its output at ci = 0. In this way the residual is always
large, which is why the proposed method is excluded from
the indeterminate types of faults at the present work. This
phenomenon can be observed in Fig. 10 where after the fault
detection, the residual is abruptly increased. In the same
figure, the effects of the two previous faults, accelerometer
and velocity, are shown at point B and C respectively.
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As mentioned in Section IV-C, a number of fault scenaria
have been investigated to test the iFD, and the initial re-
sults have shown strong potential for further research work.
Table III tabulates the results of 32 tests. More specifically,
it shows that the abrupt type of fault can be successfully
accommodated without leaving any false alarms. The False
Alarm (FA) means that a sensor that looked impaired before
it is actually damaged. This cannot be expected with incipient
type of faults due to the ability of the iFD to estimate the
faults, leaving a small residual for the detection [11].

TABLE III
SENSOR FAULT SCENARIA FOR THE EMS.

Performance with abrupt type of faults
Faulty Mu. FA Ad. FA

id sensor(s) St. Dt. St. Dt. St. Dt. St. Dt.
1 No fault X X x x X X x x
2 i X X x x X X x x
3 ż X X x x X X x x
4 z̈ X X x x X X x x
5 i → ż X X x x X X x x
6 i → z̈ X X x x X X x x
7 ż → z̈ X X x x X X x x
8 z̈ → ż → i X X x x X X x x

Mult.-Multiplicative, Addi.-Additive, FA-False Alarm

Using the full sensor set, y = {i, (zt − z), ż, z̈} it is
possible to compare the time taken for a simulation to
complete using the iFD with the time taken using a bank of
seven KE (one for each sub-set of y). In both cases the same
simulation parameters are used i.e. sampling time, solver
type, operating parameters, etc.

The simulation time requirement at a high level simulation
(Matlab/Simulink) platform where performed, clearly shows
that the iFD is more than 10 times faster than the bank-
estimator approach, and proves that the proposed fault de-
tection method is adequately fast and promising.

VI. CONCLUSIONS

The paper presents a neural network-based method, the
iFD, for detecting actuator/sensor faults. A detailed analysis
for the rationale is presented and a number of fault tests sce-
naria have been used to test the proposed method. The tests
accounted for sensor fault scenaria with abrupt/multiplicative
and abrupt/additive type of faults, and have shown that this

new approach has a strong potential for replacing a bank
of estimators. In conclusion, the proposed method results in
a simplified model-free FD that requires significantly less
computational power, its easier to train as there is only
one estimator and is faster to implement since a minimum
programming effort is required.
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