Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/4199
DC FieldValueLanguage
dc.contributor.authorMichail, Konstantinos-
dc.contributor.authorDeliparaschos, Kyriakos M.-
dc.contributor.authorMichail, Konstantinos-
dc.contributor.otherΜιχαήλ, Κωνσταντίνος-
dc.contributor.otherΔεληπαράσχος, Κυριάκος-
dc.date.accessioned2013-04-15T08:01:15Zen
dc.date.accessioned2013-05-17T10:36:31Z-
dc.date.accessioned2015-12-09T12:01:35Z-
dc.date.available2013-04-15T08:01:15Zen
dc.date.available2013-05-17T10:36:31Z-
dc.date.available2015-12-09T12:01:35Z-
dc.date.issued2012-09-
dc.identifier.citationIEEE 17th Conference on Emerging Technologies & Factory Automation (ETFA), 17-21 Sept. 2012en_US
dc.identifier.isbn978-146734737-2-
dc.description.abstractThe paper describes a low computational power method for detecting sensor faults. A typical fault detection unit for multiple sensor fault detection with modelbased approaches, requires a bank of estimators. The estimators can be either observer or artificial intelligence based. The proposed control scheme uses an artificial intelligence approach for the development of the fault detection unit abbreviated as ‘i-FD’. In contrast with the bank-estimators approach the proposed i-FD unit is using only one estimator for multiple sensor fault detection. The efficacy of the scheme is tested on an Electro-Magnetic Suspension (EMS) system and compared with a bank of Kalman estimators in simulation environment.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.rights© Copyright 2013 IEEE - All rights reserved.en_US
dc.subjectKalman filtersen_US
dc.subjectArtificial intelligenceen_US
dc.subjectElectromagnetic devicesen_US
dc.subjectFault diagnosisen_US
dc.subjectMagnetic levitationen_US
dc.subjectNeurocontrollersen_US
dc.titleSensor fault detection with low computational cost : a proposed neural network-based control schemeen_US
dc.typeConference Papersen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.subject.categoryMechanical Engineeringen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.relation.conferenceConference on Emerging Technologies & Factory Automation (ETFA)en_US
dc.identifier.doi10.1109/ETFA.2012.6489628en_US
dc.dept.handle123456789/134en
cut.common.academicyear2012-2013en_US
item.openairetypeconferenceObject-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.languageiso639-1en-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-0618-5846-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
Files in This Item:
File Description SizeFormat
ETFA2012.pdf271.29 kBAdobe PDFView/Open
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 6, 2023

Page view(s) 50

367
Last Week
0
Last month
2
checked on Jan 28, 2025

Download(s)

133
checked on Jan 28, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.