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Abstract

The paper describes a low computational power

method for detecting sensor faults. A typical fault detec-

tion unit for multiple sensor fault detection with model-

based approaches, requires a bank of estimators. The es-

timators can be either observer or artificial intelligence

based. The proposed control scheme uses an artificial in-

telligence approach for the development of the fault de-

tection unit abbreviated as ‘i-FD’. In contrast with the

bank-estimators approach the proposed i-FD unit is using

only one estimator for multiple sensor fault detection. The

efficacy of the scheme is tested on an Electro-Magnetic

Suspension (EMS) system and compared with a bank of

Kalman estimators in simulation environment.

1. Introduction

Modern control systems require careful and economic

design with maximum performance and reliabilities. Such

design is a trade-off between the economic and control

and reliability properties i.e. use the most economic

way where control performance and reliability are both

achieved at the desirable level. Such systems are clas-

sified as safety-critical systems where the faults must be

accommodated before the impaired system becomes un-

stable. Therefore the Fault Tolerant Control (FTC) con-

cept is used to accommodate possible faults [1] eg. sensor

faults. Particularly, the information fed into the controller

using sensors is vital for the stable and reliable operation

of a control system, therefore fault tolerance for sensor

failure(s) must be considered.

FTC systems are classified into to types, Passive Fault

Tolerant Control (PFTC) and Active Fault Tolerant

Control (AFTC) [12] in the first case a prior knowledge

of the fault is required in order to design a controller

which will be insensitive to the faults while in the latter

case (used in this paper) a Fault Detection and Isolation

(FDI) mechanism is required in combination with a vari-

able structure controller. When one or more sensor faults

occur, the FDI unit detects, isolates and instructs for con-

troller reconfiguration. Reconfigurable FTC control has

gain a lot of intention the last years because of the ne-

cessity to design reliable control systems with lower cost

[7, 17].

Even though in any control system, both actuator and sen-

sor failures can occur, this work deals only with sensor

fault detection and accommodation via controller recon-

figuration (i.e. via AFTC). The FDI mechanism read both

sensor and actuator information and based on that is able

to distinguish which is(are) the faulty one(s). After that it

isolates and reconfigures the controller in order to main-

tain the performance using the remaining healthy sensors.

Other methods are using the information from the remain-

ing healthy sensors in order to reconstruct the lost sig-

nal from the faulty sensor i.e. Samy(2011) [16]. These

include the use of a bank of Neural Networks (NNs) or

Kalman Estimators (KE) [11, 15]. Both prove to be use-

ful when aimed to avoid sensor redundancy.

In any case, if there are many sensors, a bank of those is

needed to be designed in order to detect multiple faults.

For example, if an n number of sensors are used, then the

number of faults that could happen is 2n − 1 (assuming

that not all sensors can fail). Therefore if fault tolerance is

to be considered, the control design becomes more com-

plex and requires additional computational power. The

contribution of this work lies on the fact that a low com-

putational cost FDI mechanism based on neural networks

is presented reducing the complexity and computational

power of a bank-based FD unit.

NNs have been extensively used in many engineering

fields including control systems [6] as well as for fault

detection in FTC systems [13, 14] and particularly in Sen-

sor FDI and Accommodation (SFDIA) (see Samy (2011)

and references therein [16]).

The novelty of this paper focuses on the development of a

NN based FDI unit (i-FD) which is able to detect multiple

sensor faults with low complexity computational power.

The rest of the paper is organized as follows: Section 2
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Figure 1. A general diagram of SFDI with the

proposed i-FD (bolted lines) and a bank of

estimators (dotted lines).

describes the proposed i-FD approach, Section 3 gives a

short description of the NN used for the i-FD training fol-

lowed by the EMS model description and the implemen-

tation with the i-FD in Section 4. Section 5 gives the anal-

ysis of the results and the paper concludes in Section 6.

2 The Proposed i-Fault Detection scheme

A typical multiple sensor fault detection mechanism

requires a bank of estimators. Typically such FD mech-

anism is depicted in Fig. 1 with dotted lines (note that BS

and C are used only for the i-FD). Assuming a plant with

a set of actuators, U and a set of sensors, Y the sensor

FD can be done using a bank of estimators that read the

actual measurements from actuators and sensors and gen-

erates the estimated signal, ŷi for each sensor. Both the ac-

tual and estimated signals are fed into the residual genera-

tion unit where one residual is generated from each sensor

measurement. Each residual indicates whether the actual

measurement coming from a particular sensor is faulty or

not. Since this FD method is model-based, the model of

the plant should be well known otherwise the rate of false

alarms could be high reducing the reliability of the FD

mechanism. A moving average filter is used for each sen-

sor for the residual generation, shown in (1).

ri =

i
∑

i−(N−1)

(yi − ŷi)
2

N
(1)

where yi is the actual measurement and ŷi is the estimated

one. N is the number of past residual samples

As it was mentioned, the estimator can be observer or

artificial intelligent-based where a bank of dedicated ob-

servers [8] or NNs [16] can be used for signal estimation.
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ŷ1

ŷ2
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Figure 2. The detailed diagram of the i-FD.

However, these techniques use more computational re-

sources with increased applicability complexity than the

method proposed in this paper. Both estimators require

some form of off-line preparation. In the case of the

observer-based technique the observer has to be tuned in

order to minimize the error between the actual and esti-

mated measurements while in the NN case the estimator

must be trained. The proposed i-FD mechanism uses a

NN-based approach where one estimator is trained for all

the sensor fault scenarios and produces the estimated sen-

sor signals accordingly. The training method is explained

latter in Section 3. As it can be clearly seen in Fig. 1 the

proposed i-FD diagram depicted with bolted lines can eas-

ily replace the bank of estimators with only a slight mod-

ification, or in particular by adding the Binary Switches

(BS) that control the input at the i-FD and a set of func-

tions C. Both the U and Y are fed into the i-FD and the es-

timated measurements are fed into the residual generator

producing one residual for each measurement. If there is

one or more faulty measurements the decision unit will de-

tect this and produce two signals: (i) the Reconfiguration

Signal (RS) which instructs for changing controller that is

a priori tuned to work with the remaining healthy sensors,

(ii) a vector of binary type Isolation Signals (ISs) which

will remove the faulty sensors from the loop and simul-

taneously connect the corresponding predefined functions

ci at the input of the i-FD using the BS. A typical decision

making for a IS is given in (2).

yiot = {yin if IS=1
c if IS=0 (2)

The detailed diagram of the proposed i-FD is shown in

Fig. 2. The set of actuators U and sensors y1, y2 . . . yn
with a number of n sensors is fed into the i-FD unit along

with the actual measurements set. The estimated measure-

ments are compared with the actual ones and the residuals

are given to the decision mechanism. When one or more

sensor failures occur the decision mechanism will give the

RS and the IS to the switching unit for isolating the faulty

signals and give new inputs i.e. ci functions to the i-FD

estimator.

3. The Neural Network Algorithm

A dynamic nonlinear input-output NN model with

tapped delay lines at the input was used for time-series



prediction. The neural network’s main work is to per-

form similarly as a bank of KE in the feedback loop

and to predict future values based on past values of one

or more time series. More specifically, to predict y(t)
series based on n past values of x(t) series such that

y(t) = f(x(t − 1), ..., x(t − n)). It is obvious that the

NN structure in this application significantly simplifies the

feedback scheme in terms of filter resources and reduces

the computational complexity plus it makes the feedback

loop less error prone.

The NN has 5 inputs (u and i, (zt− z), ż, z̈) and 3 outputs

(̂i, ˆ̇z, ˆ̈z). Its internal architecture is realised as a hidden

layer (with one delay and 20 hidden neurons) and an out-

put layer with sigmoid and linear functions respectively.

A fast convergence method for training moderate sized

feed-forward neural networks is the Levenberg-Marquardt

backpropagation [5] (also see Ch. 11 and 12 of [4]) al-

gorithm which was used as the training method for the

NN in order to fit the inputs and targets. The training

data that were later used to train the NN, were collected

in an online model working state with the H∞ Loop-

Shaping Designed Procedure (LSDP) controllers in the

feedback loop, and by successively in equal time windows

(T = 6.6s) failing sensor set combinations with 1kHz
sampling time. The resulting training sets are: 52808× 5
for the inputs and 52808× 3 for the outputs. The stopping

criteria used is the Mean Square Error (MSE≤ 10−5) or

the maximum number of epochs set at 1000. The structure

of the training data is explained next.

3.1 The i-FD unit training: obtaining the learning set

The key point here is the method the i-FD mechanism

is trained. In order to train the i-FD unit, data have to

be taken using the various sub-sets of the selected sensor

set, Yo. The collected data are then packed together in the

format shown in Table 1. The measurements from each

sensor set, form the data set D that is listed for each sensor

set. In places where the sensor(s) is(are) assumed to be

faulty, a known input ci, is given by the user. Such that

the i-FD learns to respond to sensor faults in a way that

the same i-FD unit continually check for faults of the full

sensor set and its sub-sets.

4. The EMS system - A test case

4.1 The EMS model

The single-stage, one degree-of-freedom model of the

EMS system represents the quarter of a typical MA-

GLEV vehicle. The EMS is a non-linear, inherently un-

stable, critical-safety system with non-trivial control re-

quirements. A few details are given about the EMS model

in this section, however, a rigorous analysis is reported in

Michail(2009) [9].

The state space equations expressing the linearised model

are given as:

ẋ = Ax+Buc
uc +Bżt żt y = Cx (3)

The state vector is x = [i ż (zt − z)]T , where i is the

current, ż the vertical velocity and (zt − z) the airgap to

be controlled (with zt being the rail’s position and z the

electromagnet’s position), żt is the velocity of the track

input and uc is the control (voltage) input. The matrices

A,Buc
,Bżt and C are given in (4)-(6). C is the output

matrix that gives the measurements used as y = [i, (zt −
z), ż, z̈].

A =









− Rc

Lc+
KbNcAp

Go

−
KbNcApIo

G2
o

(

Lc+
KbNcAp

Go

) 0

−2Kf
Io

MsG2
o

0 2Kf
I2
o

MsG3
o

0 −1 0









(4)

Buc
=

[

1

Lc+
KbNcAp

Go

0 0
]T

(5)

Bżt =

[

KbNcApIo

G2
o

(

Lc+
KbNcAp

Go

) 0 1
]T

C =









1 0 0
0 0 1
0 1 0

−2Kf
Io

MsG2
o

0 2Kf
I2
o

MsG3
o









(6)

The basic variables that give the non-linear characteris-

tics of the EMS are namely: the force F , the flux density

B, the airgap G and the coil’s current I [3]. The values

of these for a quarter car vehicle with Ms = 1000kg are

given as Fo = 9810N,Go = 15mm,Bo = 1T, Io = 10A
with an operating voltage of Vo = 100V . The parameters

of the electromagnet are: Number of turns Nc = 2000,

Coil’s Resistance Rc = 10Ω, Coil’s Inductance Lc =
0.1H and a pole face area Ap = 0.01m2.

At the input żt, there are two types of disturbances in the

vertical direction, one is the gradients onto the track and

the other comes from the track irregularities and uneven-

ness of the track during the installation. In this paper, only

the former type of disturbance is considered. A deter-

ministic input with a gradient of 5% at a vehicle speed of

15m/s, an acceleration of 0.5m/s2 and a jerk of 1m/s3

is used as illustrated in Fig. 3 [9]. The control design

requirements of an EMS system depend on the type and

speed of the train [2]. Typically, the EMS should be able

to follow the gradient onto the rail (deterministic input).

The control performance requirements of the EMS with

deterministic input are listed on Table 2.

Table 2. Control constraints of the EMS.

EMS limitations Value

Maximum airgap deviation,(zt − z)p ≤ 7.5mm
Control effort,ucp ≤ 300V
Settling time, ts ≤ 3s
Airgap Steady state error,(zt − z)ess = 0



Table 1. Structure of the data used for the i-FD training.

Sensor Set Measured Estimated

Status

y1 y2 y3 y4 u ŷ1 ŷ3 ŷ4
i (zt − z) ż z̈ u î ˆ̇z ˆ̈z

Healthy D1
y1
1

D1
y1
2

D1
y1
3

D1
y1
4

D1
u1
y1,y2,y3,y4

D1
ŷ1
1

D1
ŷ1
3

D1
ŷ1
4

Set
...

...
...

...
...

...
...

...

D1
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2
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D1
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D1
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D1
ŷk
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D1
ŷk
3
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ŷk
4

Faulty c11 D2
y1
2

D2
y1
3

D2
y1
4
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u1
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c11 D2
ŷ1
3

D2
ŷ1
4

y1
...

...
...

...
...

...
...

...

c1k D2
yk
2

D2
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3

D2
yk
4

D2
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y2,y3,y4

c1k D2
ŷk
3

D2
ŷk
4
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y1
2

c31 D3
y1
4

D3
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y2,y4

c11 c31 D3
ŷ1
4

y1, y3
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c1k D3
yk
2
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4

D3
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y2,y4

c1k c3k D3
ŷk
4

Faulty c11 D4
y1
2

c31 c41 D4
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y1, y3, y4
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...
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...

c1k D4
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c3k c4k D4
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k is the total number of all samples in the training data set
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Figure 3. Disturbance Input to the EMS.

4.2 The i-FD applied on the EMS system

This i-FD mechanism is successfully combined with

the FTC system of the suspension as illustrated in Fig. 4.

A bank of H∞ LSDP designed controllers is used to ac-

commodate sensor faults. The EMS system has a total

of 5 measurements from where 4 are used for control i.e.

Yo = {i, (zt − z), ż, z̈}. There are different sensor fault

combinations that could occur, totally 24 − 1 = 15. How-

ever, due to the control method used is the LSDP, which

requires the airgap as a standard measurement, the total

sensor fault combinations that could happen reduces to

23 − 1 = 7. Therefore, 7 H∞ loop-shaping design con-

trollers are used to cover the sensor faults. When one or

more sensors fail, the fault is detected, isolated and a new

controller is introduced in the loop which is tuned a priori.

For the demonstration of the proposed FD the results from

[10] are used.
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Figure 4. The proposed i-FD for the EMS

system.

4.3 Sensor Fault Scenarios

When a sensor fails, its output can be unpredictable.

The sensor faults can be added or multiplied with the sen-

sor’s output as depicted in Fig. 5. Therefore the fault cat-

egories are separated to additive and multiplicative faults

with the former been considered in this paper. Further

more, the types of faults can be separated into three types:

(i) abrupt or step-type fault, (ii) incipient or soft fault and

(iii) indeterminate fault as given in the same figure.

A number of sensor fault scenarios is given in this section.

The faults considered are additive faults, both abrupt and

incipient types. In total there are 4 sensors in the selected

sensor set, but the assumption is that only 3 can fail, the

current i, the vertical velocity ż and the vertical accelera-

tion z̈. Both the abrupt and incipient sensor fault profiles

for the current (i) sensor are illustrated in Fig. 6. Both

faults are additive and occur at 1s (at point A on the fig-
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ure).

Using these fault profiles for the other two sensors the

total sensor fault scenarios used for the test of the pro-

posed i-FD with the EMS system are listed on Table 3.

There are 8 scenarios with either abrupt of incipient fault

making a total of 15 test cases. For the sensor fault sce-

narios some assumptions hold:(i) when a sensor fails the

damage is permanent i.e. no indeterminate faults are con-

sidered, (ii) when a series of sensor failure occurs the fault

is either abrupt or incipient for each sensor and (iii) when

a series of sensors fail there is a time difference of 1 sec.

5 Simulations and results analysis

Not all results from the simulations can be presented

here, however a summary and the main points to show the

effectiveness of the proposed i-FD unit are described. A

detailed analysis for the situation where the current sensor

is impaired at time of one second is considered. The sen-

sor’s output suddenly gives a low frequency signal with

random characteristics as shown in Fig. 6. The airgap sen-

sor output in the case of such a fault profile is depicted in

Fig.7. The figure depicts the airgap with fault-free case

(i.e. healthy sensor set) and with a current sensor fault.

The fault starts at 1s (point A) and immediately after-

wards a controller reconfiguration follows, where a new

controller is introduced in the loop in order to maintain the

stability and performance of the EMS. Both fault-free and

fault conditions comply with the EMS requirements as de-

scribed in Section 4. The sensor fault accommodation is

done in three steps: (i) Sensor Fault Detection: When the

fault occurs the residual of the current measurement ri,
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rent sensor and the output of the i-FD.

starts increasing and as soon as it pass the threshold (see

Fig. 9) the fault is detected. (ii) Fault Isolation: In this

stage the faulty sensor is removed from the loop using a

binary switch (BS) while a know function ci is connected

at the input of the i-FD. Figure 8 shows the signal at the in-

put and output of the BS as well as the signal at the output

of the i-FD are depicted. (iii) Controller reconfiguration:

After the faulty sensor isolation a reconfiguration signal is

generated and a new controller is introduced in the loop.

Taking a closer look in Fig. 8 after the fault occurs at point

A, the i-FD detects the fault after td = 0.095 seconds

(Point B), while in the next time step the i-FD reacts and

drives its output at c value. In this way the residual is

always large, which is why the proposed method is ex-

cluded from the indeterminate types of faults at the mo-

ment. This phenomenon can be observed on Fig. 9 where

after the fault detection, the residual is abruptly increased.

As it was previously mentioned in Section 4.3, a number

of fault scenarios have been investigated to test the i-FD,

and the initial results have shown strong potential for fu-

ture work. The results of 15 tests are tabulated on Table 3.

It shows that the abrupt type of fault can be successfully

accommodated with out leaving any false alarms while in

the incipient case most of the faults where accommodated

except in scenarios with id:4,7,8. The False Alarm (FA)
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Table 3. Sensor fault scenarios for the EMS.

Scenario Faulty Performance

id sensor(s) Ab. FA In. FA

1 No fault X x X x

2 i X x X x

3 ż X x X x

4 z̈ X x X X

5 i → ż X x X x

6 i → z̈ X x X x

7 ż → z̈ X x X X

8 i → ż → z̈ X x X X

Ab-Abrupt,In-Incipient,FA-False Alarm

means that a sensor looked impaired before it is actually

damaged. In fact, this happens because it is harder to de-

tect incipient faults as the NN nature of the i-FD allows

it to follow the fault leaving a very small residual. Other

than that, stability and performance were accommodated

in all 15 scenarios.

Using the same sensor set, y = {i, (zt− z), ż, z̈} a simple

comparison is to compare the time taken for a simulation

taken to complete using the i-FD and a bank of 7 KE (one

for each sub-set of y) using the same simulation parame-

ters i.e. sampling time, solver type, operating parameters

etc. The simulation shows that the i-FD is more that 10

times faster than the bank-estimator approach therefore at

the Matlab simulation level the proposed fault detection

method looks very fast and promising.

6 Conclusion

The paper presents a neural network-based method, the

i-FD, for detecting sensor faults. A detailed analysis for

the rationale is presented and a number of fault tests sce-

narios have been used to test the proposed method. The

tests accounted for sensor fault scenarios with additive and

abrupt or incipient type of faults, and have shown that this

new approach has a strong potential for replacing a bank

of estimators. In conclusion, the proposed method results

in a simplified model-free FD, that requires significantly

less computational power, its easier to train as there is only

one estimator and is faster to implement since a minimum

programming effort is required.
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