Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/3957
Τίτλος: Spatiotemporal saliency for video classification
Συγγραφείς: Tsapatsoulis, Nicolas 
Rapantzikos, Konstantinos 
Avrithis, Yannis 
Kollias, Stefanos D. 
Major Field of Science: Natural Sciences
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: Spatiotemporal visual saliency;Video classification
Ημερομηνία Έκδοσης: Αυγ-2009
Πηγή: Signal Processing: Image Communication, 2009, vol. 24, no. 7, pp. 557–571
Volume: 24
Issue: 7
Start page: 557
End page: 571
Περιοδικό: Signal Processing: Image Communication 
Περίληψη: Computer vision applications often need to process only a representative part of the visual input rather than the whole image/sequence. Considerable research has been carried out into salient region detection methods based either on models emulating human visual attention (VA) mechanisms or on computational approximations. Most of the proposed methods are bottom-up and their major goal is to filter out redundant visual information. In this paper, we propose and elaborate on a saliency detection model that treats a video sequence as a spatiotemporal volume and generates a local saliency measure for each visual unit (voxel). This computation involves an optimization process incorporating inter- and intra-feature competition at the voxel level. Perceptual decomposition of the input, spatiotemporal center-surround interactions and the integration of heterogeneous feature conspicuity values are described and an experimental framework for video classification is set up. This framework consists of a series of experiments that shows the effect of saliency in classification performance and let us draw conclusions on how well the detected salient regions represent the visual input. A comparison is attempted that shows the potential of the proposed method.
URI: https://hdl.handle.net/20.500.14279/3957
ISSN: 09235965
DOI: 10.1016/j.image.2009.03.002
Rights: © Elsevier
Type: Article
Affiliation: Cyprus University of Technology 
National Technical University Of Athens 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

26
checked on 9 Νοε 2023

WEB OF SCIENCETM
Citations 50

24
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s)

501
Last Week
0
Last month
7
checked on 6 Νοε 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα