Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/3708
Τίτλος: Application of neural networks and genetic algorithms for sizing of photovoltaic systems
Συγγραφείς: Mellit, Adel 
Drif, Mahmoud 
Kalogirou, Soteris A. 
Major Field of Science: Engineering and Technology
Field Category: Environmental Engineering
Λέξεις-κλειδιά: Neural networks (Computer science);Genetic algorithms;Number theory
Ημερομηνία Έκδοσης: Δεκ-2010
Πηγή: Renewable Energy, 2010, vol. 35, no. 12, pp. 2881–2893
Volume: 35
Issue: 12
Start page: 2881
End page: 2893
Περιοδικό: Renewable Energy 
Περίληψη: In this paper, an artificial neural network-based genetic algorithm (ANN-GA) model was developed for generating the sizing curve of stand-alone photovoltaic (SAPV) systems. Firstly, a numerical method is used for generating the sizing curves for different loss of load probability (LLP) corresponding to 40 sites located in Algeria. The inputs of ANN-GA are the geographical coordinates (Lat, Lon and Alt) and the LLP while the output is the sizing curve represented by CA=f(CS). Subsequently, the proposed ANN-GA model has been trained by using a set of 36 sites, whereas data for 4 sites which are not included in the training dataset have been used for testing the ANN-GA model. The results obtained are compared and tested with those of the numerical method. In addition, two new regression models have been developed and compared with the conventional regression models. The results show that, the proposed exponential regression model with three coefficients presents more accurate results than the conventional regression models. A new ANN has been used for predicting the sizing coefficients for the best regression model. These coefficients can be used for developing the sizing curve in different locations in Algeria. The results obtained showed that the coefficient of multiple determination (R2) is 0.9998, which can be considered as very promising
URI: https://hdl.handle.net/20.500.14279/3708
ISSN: 18790682
DOI: 10.1016/j.renene.2010.04.017
Rights: © Elsevier
Type: Article
Affiliation: Centre de développement des énergies renouvelables 
Cyprus University of Technology 
Jijel University 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

80
checked on 9 Νοε 2023

WEB OF SCIENCETM
Citations 5

69
Last Week
0
Last month
1
checked on 29 Οκτ 2023

Page view(s)

605
Last Week
0
Last month
11
checked on 6 Νοε 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα