Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/3509
Τίτλος: | Spatial histogram of keypoints | Συγγραφείς: | Tsapatsoulis, Nicolas Theodosiou, Zenonas |
metadata.dc.contributor.other: | Τσαπατσούλης, Νικόλας Θεοδοσίου, Ζήνωνας |
Major Field of Science: | Engineering and Technology | Field Category: | Electrical Engineering - Electronic Engineering - Information Engineering | Λέξεις-κλειδιά: | Local features;Hilbert space-filling curve;Spatial Histogram;Visual models creation | Ημερομηνία Έκδοσης: | 2013 | Πηγή: | 20th IEEE International Conference on Image Processing, 2013, Melbourne, Australia, 15-18 September | Περίληψη: | Among a variety of feature extraction approaches, special attention has been given to the SIFT algorithm which delivers good results for many applications. However, the non fixed and huge dimensionality of the extracted SIFT feature vector cause certain limitations when it is used in machine learning frameworks. In this paper, we introduce Spatial Histogram of Keypoints (SHiK), which keeps the spatial information of localized keypoints, on an effort to overcome this limitation. The proposed technique partitions the image into a fixed number of ordered sub-regions based on the Hilbert space- filling curve and counts the localized keypoints found inside each sub-region. The resulting spatial histogram is a compact and discriminative low-level feature vector that shows significantly improved performance on classification tasks. The proposed method achieves high accuracy on different datasets and performs significantly better on scene datasets compared to the Spatial Pyramid Matching method. | URI: | https://hdl.handle.net/20.500.14279/3509 | DOI: | 10.1109/ICIP.2013.6738602 | Rights: | © IEEE | Type: | Conference Papers | Affiliation: | Cyprus University of Technology |
Εμφανίζεται στις συλλογές: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
CORE Recommender
SCOPUSTM
Citations
20
8
checked on 8 Νοε 2023
Page view(s) 20
485
Last Week
0
0
Last month
1
1
checked on 30 Ιαν 2025
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα