Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/3473
Τίτλος: Investigating the Scalability of Algorithms, the Role of Similarity Metric and the List of Suggested Items Construction Scheme in Recommender Systems
Συγγραφείς: Tsapatsoulis, Nicolas 
Georgiou, Olga 
Major Field of Science: Social Sciences
Field Category: Economics and Business
Λέξεις-κλειδιά: Artificial intelligence;Algorithms;Genetic algorithms;Recommender systems
Ημερομηνία Έκδοσης: 2012
Πηγή: International journal on artificial intelligence tools, 2012, vol. 21, no. 4
Volume: 21
Issue: 4
Περιοδικό: International Journal on Artificial Intelligence Tools 
Περίληψη: The continuous increase in demand for new products and services on the market brought the need for systematic improvement of recommendation technologies. Recommender systems proved to be the answer to the data overload problem and an advantage for e-business. Nevertheless, challenges that recommender systems face, like sparsity and scalability, affect their performance in real-world situations where both the number of users and items are high and item rating is infrequent. In this article we propose a cluster based recommendation approach using genetic algorithms. Users are grouped into clusters based on their past choices and preferences and receive recommendations from the other cluster members with the aid of an innovative recommendation scheme called Top-Nvoted items. Similarity between users is computed using the max_norm Pearson coefficient. This is a modified form of the widely used Pearson coefficient and it is used to prevent very active users dominating recommendations. We compare our approach with five well established recommendation methods with the aid of three different datasets. These datasets vary in terms of the number of users, the number of items, and the sparsity of ratings. As a result important conclusions are drawn about the efficiency of each method with respect to scalability and dataset's sparsity
URI: https://hdl.handle.net/20.500.14279/3473
ISSN: 17936349
DOI: 10.1142/S0218213012400180
Rights: © 2012 World Scientific Publishing Company
Type: Article
Affiliation: Cyprus University of Technology 
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 50

10
checked on 9 Νοε 2023

WEB OF SCIENCETM
Citations

7
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s)

543
Last Week
1
Last month
2
checked on 3 Ιαν 2025

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα