Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/33019
Τίτλος: Developing predictive models for the load-displacement response of laterally loaded reinforced concrete piles in stiff unsaturated clay using machine learning algorithms
Συγγραφείς: Braun, Kevin T. 
Markou, George 
Jacobsz, S. W. 
Calitz, Duan 
Major Field of Science: Engineering and Technology
Field Category: Computer and Information Sciences;ENGINEERING AND TECHNOLOGY;Civil Engineering;Other Engineering and Technologies
Λέξεις-κλειδιά: Soil-structure interaction;Machine learning algorithms;Predictive models;Reinforced concrete pile;Horizontal load-displacement response
Ημερομηνία Έκδοσης: 1-Ιου-2024
Πηγή: Structures, 2024, vol.64
Volume: 64
Περιοδικό: Structures 
Περίληψη: The design of pile foundations that are expected to develop significant lateral loading is a complex procedure that requires the development of objective and accurate design formulae that will not be based on semi-empirical know-how. For this reason, the main objective of this research work is to develop predictive models that will be able to compute the overall mechanical response of reinforced concrete (RC) piles embedded in unsaturated clay. To achieve this goal, experimental data, and advanced nonlinear 3D detailed finite element (FE) modelling were used to construct datasets comprising multiple results related to the ultimate capacity and corresponding horizontal deformation of RC piles that are loaded horizontally until failure. In total, three datasets were developed and then used to train and test predictive models through the use of various machine learning (ML) algorithms. After successfully developing various predictive models, an out-of-sample dataset was developed and used to further validate the accuracy and extendibility of the predictive models. Finally, the most accurate ML-generated predictive model was used to predict the mechanical response of a RC pile embedded in unsaturated clay that was experimentally tested. The ability of the proposed predictive model is demonstrated through this pilot research work.
URI: https://hdl.handle.net/20.500.14279/33019
ISSN: 23520124
DOI: 10.1016/j.istruc.2024.106532
Rights: Attribution 4.0 International
Type: Article
Affiliation: University of Pretoria 
Neapolis University Pafos 
SRK Consulting 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
Developing predictive models.pdf10 MBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

Page view(s)

30
Last Week
7
Last month
checked on 6 Νοε 2024

Download(s)

16
checked on 6 Νοε 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons