Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/32894
Τίτλος: | A survey on computational intelligence approaches for intelligent marine terminal operations | Συγγραφείς: | Aslam, Sheraz Michaelides, Michalis P. Herodotou, Herodotos |
Major Field of Science: | Engineering and Technology | Field Category: | Mechanical Engineering | Λέξεις-κλειδιά: | intelligent transportation systems;Optimization and uncertainty | Ημερομηνία Έκδοσης: | 1-Μαΐ-2024 | Πηγή: | IET Intelligent Transport Systems, 2024, vol 18, no. 5, pp. 755-793 | Volume: | 18 | Issue: | 5 | Start page: | 755 | End page: | 793 | Περιοδικό: | IET Intelligent Transport Systems | Περίληψη: | Marine container terminals (MCTs) play a crucial role in intelligent maritime transportation (IMT) systems. Since the number of containers handled by MCTs has been increasing over the years, there is a need for developing effective and efficient approaches to enhance the productivity of IMT systems. The berth allocation problem (BAP) and the quay crane allocation problem (QCAP) are two well-known optimization problems in seaside operations of MCTs. The primary aim is to minimize the vessel service cost and maximize the performance of MCTs by optimally allocating berths and quay cranes to arriving vessels subject to practical constraints. This study presents an in-depth review of computational intelligence (CI) approaches developed to enhance the performance of MCTs. First, an introduction to MCTs and their key operations is presented, primarily focusing on seaside operations. A detailed overview of recent CI methods and solutions developed for the BAP is presented, considering various berthing layouts. Subsequently, a review of solutions related to the QCAP is presented. The datasets used in the current literature are also discussed, enabling future researchers to identify appropriate datasets to use in their work. Eventually, a detailed discussion is presented to highlight key opportunities along with foreseeable future challenges in the area. | URI: | https://hdl.handle.net/20.500.14279/32894 | ISSN: | 1751956X | DOI: | 10.1049/itr2.12469 | Rights: | Attribution-NonCommercial-NoDerivatives 4.0 International | Type: | Article | Affiliation: | Cyprus University of Technology | Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Περιγραφή | Μέγεθος | Μορφότυπος | |
---|---|---|---|---|
IET Intelligent Trans Sys - 2024 - Aslam - A survey on computational intelligence approaches for intelligent marine.pdf | 3.1 MB | Adobe PDF | Δείτε/ Ανοίξτε |
CORE Recommender
Page view(s)
57
Last Week
1
1
Last month
13
13
checked on 22 Δεκ 2024
Download(s)
24
checked on 22 Δεκ 2024
Google ScholarTM
Check
Altmetric
Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons