Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/32876
Τίτλος: What do Long-Term Satellite Data Reveal about Forest Dynamics in the Paphos Forest?
Συγγραφείς: Theocharidis, Christos 
Eliades, Marinos 
Gitas, Ioannis 
Papoutsa, Christiana 
Kontoes, Haris 
Christofe, Andreas 
Danezis, Chris 
Hadjimitsis, Diofantos G. 
Major Field of Science: Natural Sciences
Field Category: Earth and Related Environmental Sciences
Λέξεις-κλειδιά: Time series analysis;Satellites;Correlation;Time series analysis;Vegetation mapping;Landsat;Forestry
Ημερομηνία Έκδοσης: 5-Αυγ-2024
Conference: IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium 
Περίληψη: This study examines the long-term dynamics of the Paphos forest in Cyprus using Landsat satellite data for Vegetation Indices (VIs), MODIS data for evapotranspiration, and CHIRPS data for precipitation from 1991 to 2022. Sen's slope method was applied to analyse the trends in the data, revealing statistically significant positive trends in the vegetation indices despite the nearly constant precipitation, indicating increased forest vegetation over the past 30 years. Scatterplots were created mainly to examine correlations within the VIs and precipitation data but with low R-squared values ranging between 0.15-0.44. The study outcomes highlight a complex relationship with evapotranspiration and a weak correlation between precipitation and vegetation indices. These findings could be essential in understanding how forests work, especially in a semi-arid environment like Cyprus.
URI: https://hdl.handle.net/20.500.14279/32876
DOI: 10.1109/IGARSS53475.2024.10641705
Type: Conference Papers
Affiliation: ERATOSTHENES Centre of Excellence 
National Observatory of Athens (IAASARS/NOA) 
Cyprus University of Technology 
Aristotle University of Thessaloniki 
Funding: European Union's Horizon 2020 research and innovation programme
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:EXCELSIOR H2020 Teaming Project Publications

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

Page view(s)

61
Last Week
1
Last month
5
checked on 3 Φεβ 2025

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons