Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/32854
Τίτλος: | Identifying Euroscepticism Using a Text-As-Data Approach: An Experimental Study Employing Parliamentary Speeches | Συγγραφείς: | Djouvas, Constantinos Christodoulou, Christos Charalampous, Antonis Ioannidis, Nikandros |
Major Field of Science: | Social Sciences | Field Category: | Political Science | Ημερομηνία Έκδοσης: | 2023 | Πηγή: | 18th International Workshop on Semantic and Social Media Adaptation & Personalization (SMAP), 2023 | Περίληψη: | This study proposes a comprehensive measure of Euroscepticism through textual analysis of parliamentary speeches. This innovative approach offers direct insights into politicians' attitudes towards European integration, enabling quantification of the intensity of Eurosceptic sentiments. We leverage advanced Natural Language Processing (NLP) techniques, including supervised classification and transfer learning. The objectives of this research are three-fold: A) to introduce a novel method for measuring Euroscepticism using advanced NLP techniques and machine learning models, b) to compare the predictive performance of these various techniques for the task at hand, and c) to mitigate, to the extent possible, the inherent difficulties and limitations of crowdsourced data annotation when the process requires expert knowledge. Results indicate that in the absence of a humanly curated annotated dataset, GPT outperforms other approaches (F1 score 0.74). On the contrary, when such a dataset exists, Few-Shot classification proves to be the optimal solution (F1 0.87). These findings pave the way for a more accurate assessment of Euroscepticism and potentially other political phenomena, through the innovative use of NLP techniques. | URI: | https://hdl.handle.net/20.500.14279/32854 | ISBN: | 9798350327717 | DOI: | 10.1109/SMAP59435.2023.10255210 | Rights: | © IEEE | Type: | Conference Papers | Affiliation: | Cyprus University of Technology Pompeu Fabra University Barcelona |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
CORE Recommender
Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons