Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/32725
Τίτλος: | Self-Adaptive Colour Calibration of Deep Underwater Images Using FNN and SfM-MVS-Generated Depth Maps | Συγγραφείς: | Vlachos, Marinos Skarlatos, Dimitrios |
Major Field of Science: | Engineering and Technology | Field Category: | Civil Engineering | Λέξεις-κλειδιά: | underwater colour restoration;feedforward neural networks;multiview stereo;structure from motion | Ημερομηνία Έκδοσης: | 1-Απρ-2024 | Πηγή: | Remote Sensing, 2024, vol. 16, no. 7 | Volume: | 16 | Issue: | 7 | Περιοδικό: | Remote Sensing | Περίληψη: | The task of colour restoration on datasets acquired in deep waters with simple equipment such as a camera with strobes is not an easy task. This is due to the lack of a lot of information, such as the water environmental conditions, the geometric setup of the strobes and the camera, and in general, the lack of precisely calibrated setups. It is for these reasons that this study proposes a self-adaptive colour calibration method for underwater (UW) images captured in deep waters with a simple camera and strobe setup. The proposed methodology utilises the scene’s 3D geometry in the form of Structure from Motion and MultiView Stereo (SfM-MVS)-generated depth maps, the well-lit areas of certain images, and a Feedforward Neural Network (FNN) to predict and restore the actual colours of the scene in a UW image dataset. | URI: | https://hdl.handle.net/20.500.14279/32725 | ISSN: | 20724292 | DOI: | 10.3390/rs16071279 | Rights: | Attribution-NonCommercial-NoDerivatives 4.0 International | Type: | Article | Affiliation: | Cyprus University of Technology | Funding: | Cyprus University of Technology The APC was funded by Cyprus University of Technology. | Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Περιγραφή | Μέγεθος | Μορφότυπος | |
---|---|---|---|---|
remotesensing-16-01279-v2.pdf | 8.33 MB | Adobe PDF | Δείτε/ Ανοίξτε |
CORE Recommender
Page view(s)
34
Last Week
1
1
Last month
16
16
checked on 22 Δεκ 2024
Download(s)
42
checked on 22 Δεκ 2024
Google ScholarTM
Check
Altmetric
Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons