Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/31117
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mavrovouniotis, Michalis | - |
dc.contributor.author | Anastasiadou, Maria N. | - |
dc.contributor.author | Hadjimitsis, Diofantos G. | - |
dc.date.accessioned | 2024-02-08T08:39:51Z | - |
dc.date.available | 2024-02-08T08:39:51Z | - |
dc.date.issued | 2023-12-01 | - |
dc.identifier.citation | Algorithms, 2023, vol. 16, iss. 12 | en_US |
dc.identifier.issn | 19994893 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/31117 | - |
dc.description.abstract | Ant colony optimization (ACO) has proven its adaptation capabilities on optimization problems with dynamic environments. In this work, the dynamic traveling salesman problem (DTSP) is used as the base problem to generate dynamic test cases. Two types of dynamic changes for the DTSP are considered: (1) node changes and (2) weight changes. In the experiments, ACO algorithms are systematically compared in different DTSP test cases. Statistical tests are performed using the arithmetic mean and standard deviation of ACO algorithms, which is the standard method of comparing ACO algorithms. To complement the comparisons, the quantiles of the distribution are also used to measure the peak-, average-, and bad-case performance of ACO algorithms. The experimental results demonstrate some advantages of using quantiles for evaluating the performance of ACO algorithms in some DTSP test cases. | en_US |
dc.format | en_US | |
dc.language.iso | en | en_US |
dc.relation | Enhancing Earth Observation capabilities of the Eratosthenes Centre of Excellence on Disaster Risk Reduction through Artificial Intelligence | en_US |
dc.relation.ispartof | Algorithms | en_US |
dc.rights | © by the authors | en_US |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | ant colony optimization | en_US |
dc.subject | dynamic optimization | en_US |
dc.subject | traveling salesman problem | en_US |
dc.title | Measuring the Performance of Ant Colony Optimization Algorithms for the Dynamic Traveling Salesman Problem | en_US |
dc.type | Article | en_US |
dc.collaboration | ERATOSTHENES Centre of Excellence | en_US |
dc.collaboration | Cyprus University of Technology | en_US |
dc.subject.category | Civil Engineering | en_US |
dc.journals | Open Access | en_US |
dc.country | Cyprus | en_US |
dc.subject.field | Engineering and Technology | en_US |
dc.publication | Peer Reviewed | en_US |
dc.identifier.doi | 10.3390/a16120545 | en_US |
dc.identifier.scopus | 2-s2.0-85180473500 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85180473500 | - |
dc.relation.issue | 12 | en_US |
dc.relation.volume | 16 | en_US |
cut.common.academicyear | 2022-2023 | en_US |
item.openairetype | article | - |
item.cerifentitytype | Publications | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.languageiso639-1 | en | - |
crisitem.project.funder | EC | - |
crisitem.project.fundingProgram | Horizon Europe | - |
crisitem.project.openAire | info:eu-repo/grantAgreement/EC/HE/101079468 | - |
crisitem.author.dept | Department of Civil Engineering and Geomatics | - |
crisitem.author.faculty | Faculty of Engineering and Technology | - |
crisitem.author.orcid | 0000-0002-5281-4175 | - |
crisitem.author.orcid | 0000-0002-2684-547X | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
crisitem.journal.journalissn | 1999-4893 | - |
crisitem.journal.publisher | MDPI | - |
Appears in Collections: | Άρθρα/Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
algorithms-16-00545.pdf | Full text | 758.1 kB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
1
checked on Mar 14, 2024
Page view(s)
153
Last Week
2
2
Last month
9
9
checked on Feb 1, 2025
Download(s)
80
checked on Feb 1, 2025
Google ScholarTM
Check
Altmetric
This item is licensed under a Creative Commons License