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Abstract: Ant colony optimization (ACO) has proven its adaptation capabilities on optimization
problems with dynamic environments. In this work, the dynamic traveling salesman problem
(DTSP) is used as the base problem to generate dynamic test cases. Two types of dynamic changes
for the DTSP are considered: (1) node changes and (2) weight changes. In the experiments, ACO
algorithms are systematically compared in different DTSP test cases. Statistical tests are performed
using the arithmetic mean and standard deviation of ACO algorithms, which is the standard method
of comparing ACO algorithms. To complement the comparisons, the quantiles of the distribution
are also used to measure the peak-, average-, and bad-case performance of ACO algorithms. The
experimental results demonstrate some advantages of using quantiles for evaluating the performance
of ACO algorithms in some DTSP test cases.

Keywords: ant colony optimization; dynamic optimization; traveling salesman problem

1. Introduction

Ant colony optimization (ACO) is a mainstream swarm intelligence algorithm inspired
by the foraging behavior of real ant colonies [1–3]. In ACO, a colony of artificial ants con-
structs solutions guided by artificial pheromone trails and some heuristic information. ACO
has been successfully applied in various complex optimization problems [4–6]. However,
in most real-world applications, the optimization problem has a dynamic environment [7].
In particular, the environment of the optimization problem, including objective function,
constraints, search space, input variables, and so on, may change over time.

Major challenges occur when addressing dynamic optimization problems because
repeated optimization of the changing optimum is required. The optimal solution in which
the algorithm has converged to it before the dynamic change may not be the optimal
solution after the dynamic change. Consequently, the optimization process needs to be
restarted in order to search for a new optimal solution. However, it may not be very
efficient to restart the optimization process from scratch in complex problems (e.g., NP-
hard combinatorial problems), as they require huge computational efforts and time [8].

A more efficient way to address dynamic optimization problems is to use knowl-
edge from previously optimized environments to speed up the re-optimization process [9].
With ACO algorithms, this knowledge can be transferred via the pheromone trails gen-
erated in the previous environments. However, the pheromone trails of the previous
environment may contain information directing the search process to the previous opti-
mal solution, which may represent a poor local optimum in the current environment [10].
Several strategies have been integrated to enhance the adaptation capabilities of ACO
in dynamic optimization problems, such as the generation of new ants using immi-
grant schemes [11,12], population-based pheromone update strategies [13], multiple ant
colonies [14], and memetic computing [15].
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In this work, the traveling salesman problem (TSP) is used as the base optimization
problem to generate dynamic test cases using the benchmark generator proposed in [10].
A conventional ACO [16] and a population-based ACO [13] that use pheromone evapo-
ration and memory archive, respectively, to adapt to dynamic changes are applied to the
generated dynamic TSP (DTSP) test cases.

The most common method to evaluate the performance of ACO in dynamic environ-
ments is used in the experiments, that is, to obtain the mean and standard deviation (for
multiple independent executions) for the generated DTSPs. Statistical tests are performed
to compare the algorithms. In [17], it is argued that, for stochastic algorithms (e.g., ACO
algorithms), this way of comparison may not be very informative. This is because the
distribution of executing ACO algorithms multiple times may be asymmetrical and, hence,
outlier values may affect the mean value. Consequently, inadequate information regard-
ing the average performance of the algorithms may be provided. In contrast, quantiles
of the distribution may address this issue with the use of median values as an average
performance measurement.

The rest of the paper is structured as follows. Section 2 provides a description of the
TSP as well as a description of the generation of dynamic test cases. Section 3 describes
the application of the ACO metaheuristic to the TSP. In addition, the pheromone update
policies in dynamic environments for the two ACO algorithms used in the experiments
are described. Section 4 presents the experimental setup and results. An analysis of the
obtained results is provided. Section 5 concludes this work.

2. The Dynamic Traveling Salesman Problem
2.1. Problem Definition

The TSP is a well-known combinatorial optimization problem proven to be NP-
hard [18]. The problem can be described as follows: a salesperson must visit multiple
cities once and only once, starting from one city and returning finally, to the same city [19].
Typically, a fully connected weighted graph G = (N, A) is used to model the TSP, where
N = {1, . . . , n} is the set of n cities and A = {(i, j) ∈ N : i 6= j} is a set of arcs connecting
these cities. Each arc (i, j) is associated with a non-negative value dij, which is the distance
between cities i and j.

The TSP solution s = [1, . . . , n] is a permutation of city indices, and the objective
function of the TSP is defined as follows:

φ(s) =
n−1

∑
i=1

ds(i)s(i+1) + ds(n)s(1). (1)

2.2. Generating Dynamic Environments

There are two main dynamic versions of the TSP in which: (a) the values associated
with the arcs are changing [12,20–22]; and (b) the cities to be visited are changing [11,13,23].
The dynamic benchmark generator (Available at https://github.com/Mavrovouniotis/
ACODTSP (accessed on 23 February 2023)) used in [10] is adopted to generate DTSP test
cases. Each DTSP test case is characterized by the type of change (either the weights or
the nodes change), the magnitude of change (either small, medium, or severe), and the
frequency of change (either fast or slow).

For the DTSP with weight changes, a factor that increases or decreases the value of
arcs connecting cities i and j is assigned every environmental period T, i.e., dij(T), where
T = dt/ f e, f is the frequency of a dynamic change, and t is the algorithmic iteration count.
The value of the arc (i, j) changes as follows:

dij(T + 1) =

{
dij(0) +Rij, if arc(i, j) ∈ Arnd(T),
dij(T), otherwise,

(2)

whereRij is a random number drawn from a normal distribution with a zero mean and

https://github.com/Mavrovouniotis/ACODTSP
https://github.com/Mavrovouniotis/ACODTSP
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standard deviation proportional to the initial value of the arc dij(0), Arnd(T) ⊂ A is a set of
randomly selected arcs with size dmn(n− 1)e in which their values are subject to change at
environmental period index T, and m ∈ (0, 1) is the magnitude of change. Therefore, the
quality value of solution s for the DTSP depends on the parameter t and, thus, is evaluated
as φ(s, t). In other words, the quality of a solution s at time t may be different at time t + 1.

For the DTSP with node changes, a newly generated set of cities, i.e., Nrnd(T), is
initialized, with n random cities in the range of the actual set of cities N. A dynamic change
is generated for every f function evaluation, in which exactly dmne cities are randomly
chosen from Nrnd(T) to replace exactly dmne randomly chosen cities from N, where f and
m define the frequency and magnitude of a dynamic change, respectively, as above.

3. Addressing the Dynamic Traveling Salesman Problem
3.1. Ant Colony Optimization Metaheuristic

ACO has been designed for graph problems and, thus, it can be applied directly to
the TSP, which is modeled as a weighted graph [24–26]. All arcs are associated with a
pheromone trail value τij and some heuristic information value ηij. Initially, the pheromone
trails are assigned with equal values, i.e., τij ← τ0, ∀ ∈ A, where τ0 is the initial pheromone
value. The heuristic information at environment T is defined as ηij = 1/dij(T). A colony
of ω artificial ants is initially positioned in different randomly selected cities. Each ant k
will select the next city to visit based on the existing pheromone trails τij and the defined
heuristic information ηij of arc (i, j). Each ant will visit all cities once, in order to represent
a feasible DTSP solution. Then, the pheromone trails associated with the ω solutions
constructed by the ants will be reinforced according to their quality value.

3.1.1. Constructing Solutions

With a probability (1− q0), where 0 ≤ q0 ≤ 1 is a parameter of the decision rule,
the k-th chooses the next city j from city i, from a probability distribution that is defined
as follows:

pk
ij =


[τij]

α
[ηij]

β

∑l∈N k
i
[τil ]

α [ηil ]
β , if j ∈ N k

i ,

0, otherwise
(3)

where τij and ηij are the existing pheromone trail and heuristic information values, re-
spectively, N k

i is the set of cities that ant k has not visited yet, and α and β are the two
parameters that determine the relative influence of the pheromone trail and heuristic in-
formation, respectively. With probability q0, ant k chooses the next city, i.e., j, with the
maximum probability as follows [27]:

j = argmax
j∈N k

i

[
τij
]α[

ηij
]β. (4)

This selection process will continue until each ant has visited all cities once and only
once, as shown in Algorithm 1. The constructed solutions will be evaluated based on
Equation (3).

Algorithm 1 Construct Solutions (t)
1: for each ant k do
2: sk ← ∅
3: r ← random{1, . . . , n}
4: sk ← sk ∪ r
5: while sk length not equal with n do
6: j← select next city ∈ N k

i
7: sk ← sk ∪ j
8: end while
9: Ck ← φ(sk , t)

10: end for
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3.1.2. Updating Pheromone Trails

The pheromone update procedure consists of two parts: (1) pheromone evaporation,
in which all pheromone trails are reduced by a constant rate; and (2) pheromone deposit,
in which ants increase the pheromone trails associated with their constructed solutions.

In this work, the pheromone policy of the MAX −MIN Ant System (MMAS)
algorithm is used, which is one of the best-performing ACO variants [28,29]. Firstly, in the
pheromone update procedure ofMMAS, an evaporation is performed on all pheromone
trails as follows:

τij ← (1− ρ)τij, ∀ (i, j) ∈ A, (5)

where 0 < ρ ≤ 1 is the rate of evaporation.
Thereafter, the best ant is allowed to deposit pheromone as follows:

τij ← τij + ∆τbest
ij , ∀ (i, j) ∈ sbest, (6)

where sbest is the solution generated by the best ant and ∆τbest
ij = 1/Cbest, where Cbest =

φ(sbest, t) is the quality value of DTSP solution sbest. The best ant to deposit pheromone
may be either the best-so-far ant, in which case ∆τbest

ij = 1/Cbs, where Cbs = φ(sbs, t) is the

solution quality of the best-so-far ant, or the iteration-best ant, in which case ∆τbest
ij = 1/Cib,

where Cib = φ(sib, t) is the solution quality of the best ant of the iteration. By default, the
iteration-best ant is used to update the pheromone trails and, occasionally, the best-so-far
ant. The pheromone trail values inMMAS are kept to the interval [τmin, τmax], where τmin
and τmax are the minimum and maximum pheromone trails limits, respectively. The overall
MMAS pheromone update is presented in Algorithm 2, lines 1–20.

Algorithm 2 Pheromone Update (t, sib, sbs)
1: ifMMAS is selected then
2: τmax ← 1/ρCbs

3: τmin ← τmax

(
1− n√0.05

)
/
(
(cand− 1) · n√0.05

)
4: for ∀(i, j) ∈ A do
5: τij ← (1− ρ)τij
6: end for
7: sbest ← sib || sbs

8: ∆τbest
ij ← 1/Cib || 1/Cbs

9: for each arc(i, j) ∈ sbest do
10: τij ← τij + ∆τbest

ij
11: end for
12: for ∀(i, j) ∈ A do
13: if τij > τmax then
14: τij ← τmax
15: end if
16: if τij < τmin then
17: τij ← τmin
18: end if
19: end for
20: end if
21: if P-ACO is selected then
22: ∆τ ← (τmax − τ0)/K
23: if t == K then
24: pop(t)← pop(t) \ sr

25: for each arc(i, j) ∈ sr do
26: τij ← τij − ∆τ
27: end for
28: end if
29: pop(t)← pop(t) ∪ sib

30: for each arc(i, j) ∈ sib do
31: τij ← τij + ∆τ
32: end for
33: end if
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3.2. Adapting in Dynamic Environments

ACO algorithms have proven effective in addressing dynamic optimization problems
because they are very robust algorithms, according to Bonabeau et al. [30]. However,
when a dynamic change occurs, the ACO’s pheromone trails of the previous environment
will become outdated because they will be associated with the previous optimum. A
straightforward way to tackle the dynamic changes in the DTSP using a conventional
ACO, such as theMMAS, is to restart the optimization process whenever changes occur.
In particular, the pheromone trail limit values τmax and τmin are reset back to their initial
values, and all the pheromone trails are re-initialized to the initial τ0 value, as in Equation (5),
whenever a dynamic change is detected.

There are two concerns when restarting an ACO: (1) the dynamic changes are not
always detectable [31], and (2) a portion of the previous pheromone trails that can help
discover the new optimum faster is erased [32]. For the first concern, the changes in the
DTSP can be detected by re-evaluating a constant solution (or detector) on every iteration
(note that more than one detector can be used). If a change occurs in the quality of the
detector, then a dynamic change is recorded. In this way, a change is always detected for
the DTSP with node changes but not for the DTSP with weight changes. This is because the
weights affected by the dynamic change may not belong to that particular detector, and
hence, its quality will not be affected [10]. For the second concern, the pheromone trails of
the previous environment will be most probably useful when the changing environments
are correlated, e.g., when the dynamic changes are small to medium, the new environment
is more likely to be similar to the previous environment. As a consequence, some of the
previous pheromone trails will still be useful to the new environment.

Therefore, a more efficient way is to allow the pheromone evaporation defined in
Equation (5) to remove the useless pheromone trails and utilize the useful pheromone
trails of the previous environment. Specifically, the useless pheromone trails will reach
the τmin value due to the constant deduction of pheromone evaporation, whereas the
useful pheromone trails will be reinforced up to the τmax due to the pheromone deposit in
Equation (6). In other words, ACO will be able to adapt to the newly generated environment.

Figure 1 demonstrates the performance of MMAS with and without pheromone
re-initialization and proves our claims above. Specifically, it can be easily observed that
when the dynamic changes are small (i.e., m = 0.1), adapting to the changes maintains
better offline performance (see Equation (9)) in most environmental changes (except when
T = 3), whereas when the dynamic changes are severe (i.e., m = 0.75), re-initializing the
pheromone trails maintains better offline performance in most environmental changes
(except when T = 7 and T = 9). More details regarding the experimental setup of Figure 1
are given later in Section 4.

A more advanced way is to use the pheromone update policy of the population-
based ACO (P-ACO) that has been specifically designed to address optimization problems
with dynamic environments [13]. The overall P-ACO pheromone procedure is presented
in Algorithm 2, lines 21–33. In particular, an archive, i.e., pop(t), of iteration-best ants
is maintained. For every iteration t, the iteration-best ant enters pop(t), and a positive
constant pheromone update is added to the trails associated with the arcs that belong to its
solution as follows:

τij ← τij + ∆τ, ∀ (i, j) ∈ sib, (7)

where ∆τ = (τmax − τ0)/K is the constant pheromone value added, sib is the solution of
the iteration-best ant, K is the size of pop(t), and τmax and τ0 are the maximum and initial
pheromone trail values, respectively.
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Figure 1. Offline performance results (averaged over 50 runs) of MMAS without pheromone
re-initialization (Adapting) and ofMMAS with pheromone re-initialization (Restarting) for each
environmental change on kroA100 with nodes with small dynamic changes (left) and severe dynamic
changes (right).

Whenever a dynamic change occurs, the solutions represented by the current ants
in the population list may become invalid (e.g., when existing nodes are removed and
replaced with new nodes). Therefore, these solutions are repaired heuristically using the
KeepElite principle [33]. Specifically, the affected nodes are removed from the solution,
reconnecting the successor and predecessor nodes. The new nodes are inserted in the best
possible position of the solution, causing, in this way, the least increase in the solution
quality. At the same time, the corresponding pheromone trails associated with the arcs of
the affected nodes are updated.

When pop(t) is full, the current iteration-best ant needs to replace an existing ant, say
r, in pop(t), following a negative constant update to its corresponding pheromone trails,
which is defined as follows:

τij ← τij − ∆τ, ∀ (i, j) ∈ sr, (8)

where ∆τ = (τmax − τ0)/K is the constant deducted pheromone value (the same with the
added value) and sr is the solution of the ant to be replaced, typically the oldest entry of
the population list pop(t). Note that pheromone evaporation is not used in the P-ACO
algorithm. However, it is able to adapt to the changes because outdated pheromone trails
are removed directly from the population list.

The overall application ofMMAS and P-ACO algorithms for the DTSP is described
in Algorithm 3. It is worth mentioning that in bothMMAS and P-ACO, the solution of
the best-so-far ant is repaired using KeepElite, and the heuristic information is updated,
reflecting the newly generated distances as in Equation (2), whenever a dynamic change
occurs (see Algorithm 3, lines 16–33).
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Algorithm 3 ACO for DTSP

1: t← 0
2: Cbs ← ∞
3: for ∀(i, j) ∈ A do
4: τij ← τ0
5: ηij ← 1/dij(0)
6: end for
7: while termination condition not met do
8: Construct Solutions(t) % Algorithm 1
9: sib ← find best ant at iteration t

10: if φ(sib, t) is better than φ(sbs, t) then
11: sbs ← sib

12: Cbs ← Cib

13: end if
14: Pheromone Update(t, sib, sbs) % Algorithm 2
15: if dynamic change occurs then
16: ifMMAS || P-ACO then
17: Repair sbs

18: for ∀(i, j) ∈ A do
19: ηij ← 1/dij(T)
20: end for
21: if P-ACO then
22: for ∀(i, j) ∈ A do
23: τij ← τ0
24: end for
25: for each ant k ∈ pop(t) do
26: Repair sk

27: for each arc(i, j) ∈ sk do
28: τij ← τij + ∆τ
29: end for
30: end for
31: end if
32: end if
33: end if
34: t← t + 1
35: end while

4. Experimental Results
4.1. Experimental Setup

The dynamic benchmark generator, described in Section 2, is used to generate the
DTSP test cases. The following three stationary TSP benchmark instances are obtained from
TSPLIB (Available at http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ (accessed
on 3 April 2023)): kroA100, rat575, and pr1002. The magnitude of change m is set to
slightly (i.e., m = 0.1), medium (i.e., m = 0.25 and m = 0.5), and severely (i.e., m = 0.75)
changing environments. The frequency of change f is set to 10n iterations (i.e., f = 1000 for
kroA100, f = 5750 for rat575, and f = 10,020 for pr1002) to allow sufficient time for the
ACO algorithms to converge—and it is scalable for each problem instance. For each type
of DTSP (i.e., weights or nodes changes), a total of four test cases are generated from each
static benchmark instance. Ten environmental changes are allowed for each DTSP test case.

The modified offline performance [34] is used as the performance metric, which is
defined as follows:

P̄o f f line =
1
E

E

∑
t=1

φ(sbs′ , t), (9)

where E is the number of observations taken, and φ(sbs′ , t) is the solution quality value of
the best-so-far solution since the last dynamic change.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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The common ACO parameters ofMMAS and P-ACO are set to α = 1, β = 5, and
ω = 25. The evaporation rate ofMMAS is investigated with values ρ = {0.1, 0.2, 0.5, 0.8},
and it is set to ρ = 0.8. Furthermore, the exploitation strength of the decision rule is set
to q0 = 0.0, and the initial pheromone trail value τ0 = 1/ρCnn, where Cnn = φ(snn, 0)
is the solution quality generated by the nearest-neighbor heuristic. The maximum and
minimum pheromone trail limits are set to τmax = 1/ρCbest and τmin = τmax

(
1− n
√

0.05
)

/(
(cand− 1) · n

√
0.05

)
, respectively, where cand is the number of different choices available

to an ant at each step. The frequency with which the best-so-far ant deposits pheromone
occasionally is set for every 25 iterations [29]. The population list size of the P-ACO is
investigated with values K = {2, 3, 5, 10}, and it is set to K = 3. Furthermore, the initial
pheromone trail value is set to τ0 = 1/(n− 1), the exploitation strength of the decision rule
is set to q0 = 0.5, and the maximum pheromone trails limit is to τmax = 1 [35].

4.2. Statistical Comparisons Using Mean and Standard Deviation

Since ACO algorithms are non-deterministic stochastic metaheuristics, 50 indepen-
dent runs were executed on the same set of random seed numbers to perform statistical
comparisons. Tables 1 and 2 shows the mean and standard deviation of the P̄o f f line results
obtained by the MMAS and P-ACO algorithms for the DTSP with node and weight
changes, respectively. In addition, the statistical test comparisons are reported using the
Wilcoxon rank-sum statistical test with a significance level of 0.05. Figures 2–4 show plots of
P̄o f f line against the environmental changes, for kroA100, rat575, and pr1002, respectively.
From the comparisons, the following observations can be drawn.

Table 1. Mean and standard deviation results of ACO algorithms for the DTSP with node changes.

Algorithm
m ⇒ 0.1 0.25 0.5 0.75

kroA100
MMAS 22,223.86 ± 102.9 22,492.60 ± 108.1 22,537.36 ± 95.2 22,472.96 ± 70.7
P-ACO 22,118.66 ± 49.0 22,350.54 ± 67.1 22,419.70 ± 54.7 22,320.62 ± 48.8

rat575
MMAS 6573.22 ± 25.1 6577.54 ± 66.1 6399.26 ± 22.5 6401.76 ± 15.3
P-ACO 6581.46 ± 25.9 6443.86 ± 20.4 6566.00 ± 43.8 6392.60 ± 19.8

pr1002
MMAS 305,793.32 ± 1719.4 315,315.60 ± 1633.72 314,533.80 ± 1364.8 315,447.28 ± 1419.8
P-ACO 308,342.64 ± 733.1 315,763.52 ± 456.0 313,705.60 ± 445.2 315,500.44 ± 490.4

Bold values indicate statistical significance.

Table 2. Mean and standard deviation results of ACO algorithms for the DTSP with weight changes.

Algorithm
m ⇒ 0.1 0.25 0.5 0.75

kroA100
MMAS 20,543.36 ± 164.7 20,600.40 ± 62.0 20,222.00 ± 60.6 19,869.66 ± 58.2
P-ACO 20,462.34 ± 36.4 20,663.38 ± 64.7 20,196.60 ± 44.7 19,900.18 ± 37.9

rat575
MMAS 6621.04 ± 23.4 6465.78 ± 23.1 6404.72 ± 22.1 6399.72 ± 12.7
P-ACO 6758.06 ± 70.5 6675.62 ± 25.3 6643.98 ± 15.0 6618.88 ± 13.2

pr1002
MMAS 266,132.52 ± 1625.4 264,653.36 ± 1902.2 268,062.60 ± 1104.2 268,531.12 ± 1255.6
P-ACO 282,904.76 ± 592.3 276.911.88 ± 394.2 275,933.72 ± 382.7 275,841.04 ± 494.7

Bold values indicate statistical significance.
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Figure 2. Offline performance results (averaged over 50 runs) of MMAS and P-ACO for each
environmental change on kroA100 with node (left) and weight (right) changes.
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Figure 3. Offline performance results (averaged over 50 runs) of MMAS and P-ACO for each
environmental change on rat575 with node (left) and weight (right) changes.
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First, P-ACO performs significantly better thanMMAS in most DTSPs with node
changes. This is because the P-ACO has been designed to address DTSPs with node
changes. In particular, when ants are currently stored in the population list when a dynamic
change occurs, they will be repaired heuristically using change-related information (i.e.,
the inserted and removed nodes). Therefore, a constant amount of pheromones will be
removed directly from the outdated trails associated with the arcs connecting the nodes to
be removed. At the same time, the pheromone trails associated with the arcs connecting the
nodes to be inserted will receive a constant amount of pheromone. This specific pheromone
update will have a direct effect on the solution construction of the next iteration. On the
other hand, the pheromone evaporation ofMMAS requires more iterations to express its
effect (e.g., more than the frequency used in these experiments [10]). Also, the removal
of outdated pheromone trails is not applied locally to the affected areas, as in the P-ACO,
because the evaporation is applied globally on all arcs.

Second,MMAS performs significantly better than P-ACO in most DTSPs with weight
changes. This is because repairing the ants stored in the population list has no effect when
a dynamic change of this type occurs. In particular, the feasibility of the stored solutions
is not affected as in the case of the DTSP with node changes. Only the solution quality
will change (which will be re-evaluated); however, because a constant pheromone update
is performed, it has no effect on the P-ACO’s behavior. However, since the pheromone
trails in P-ACO are removed directly because of the constant pheromone removal, there
is a higher risk of erasing knowledge from previous environments. On the other hand,
the pheromone evaporation inMMAS is able to better adapt to these types of dynamic
changes because the decrease in the pheromone trails is performed gradually.

4.3. Quantile Comparisons Using Peak, Average, and Bad-Case Performances

Although the mean and standard deviation values presented in the previous section
are useful in performing statistical comparisons between ACO algorithms, they are not very
informative [17]. For example, they do not provide any indication of the expected solution
quality value in case ACO is executed once, which is the case in real-world applications. On
the other hand, the quantiles of the distribution values (from multiple independent runs)
address this issue as follows: if the quantile Qp of the solution quality value of an ACO
algorithm is Cbs, then the probability of achieving a solution quality value better or equal
to Cbs is greater than or equal to p. Tables 3 and 4 show the quantiles Q0.10, Q0.50, and Q0.90
ofMMAS and P-ACO for the DTSP with node and weight changes, respectively. Quantile
Q0.10 indicates the peak performance, Q0.50 indicates the average performance, and Q0.90
indicates the bad-case performance of algorithms. In addition, Figures 5–7 show the box
plots ofMMAS and P-ACO drawn between the first and third quartile of the distribution
on kroA100, rat575, and pr1002, respectively, for the different DTSP test cases.

Table 3. Experimental results of ACO algorithms for the DTSP with node changes.

Algorithm kroA100 rat575 pr1002
m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

Q0.10
MMAS 22,127 22,390 22,440 22,385 6573 6459 6375 6381 302,494 311,643 311,175 312,291
P-ACO 22,084 22,266 22,356 22,268 6546 6418 6397 6367 307,513 315,147 313,007 314,951

Q0.50
MMAS 22,186 22,467 22,520 22,486 6570 6483 6395 6402 306,249 315,903 314,514 316,560
P-ACO 22,102 22,341 22,416 22,319 6583 6445 6432 6390 308,586 315,880 313,964 315,455

Q0.90
MMAS 22,400 22,670 22,676 22,556 6613 6518 6431 6420 309,279 318,927 317,478 318,266
P-ACO 27,212 22,432 22,506 22,386 6610 6467 6481 6419 309,059 316,302 314,222 316,100

Bold values indicate the best results of each comparison.
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Table 4. Experimental results of ACO algorithms for the DTSP with weight changes.

Algorithm kroA100 rat575 pr1002
m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

Q0.10
MMAS 20,415 20,531 20,147 19,804 6594 6493 6380 6383 260,009 258,675 266,618 267,049
P-ACO 20,424 20,590 20,147 19,854 6658 6643 6624 6603 28,2195 276,460 275,443 275,157

Q0.50
MMAS 20,483 20,590 20,223 19,873 6618 6465 6402 6399 267,186 265,953 268,035 268,321
P-ACO 20,453 20,654 20,196 19,895 6767 6680 6644 6620 282,958 276,900 275,998 275,900

Q0.90
MMAS 20,881 20,689 20,308 19,944 6658 6499 6439 6417 270,615 269,053 269,799 270,295
P-ACO 20,519 20,753 20,245 19,956 6833 6706 6662 6634 283,574 277,404 276,372 276,496

Bold values indicate the best results of each comparison.

Figure 5. Box plots ofMMAS and P-ACO drawn between the first (Q0.25) and third quartile (Q0.75)
of the distribution on kroA100 with node (left) and weight (right) changes.

Figure 6. Box plots ofMMAS and P-ACO drawn between the first (Q0.25) and third quartile (Q0.75)
of the distribution on rat575 with node (left) and weight (right) changes.
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Figure 7. Box plots ofMMAS and P-ACO drawn between the first (Q0.25) and third quartile (Q0.75)
of the distribution on pr1002 with node (left) and weight (right) changes.

Another issue that the use of quantiles may address is when the distribution of
executing ACO algorithms multiple times is asymmetrical (i.e., having several outliers
such as the distribution of MMAS in Figure 5 for kroA100 with weight changes, and
P-ACO in Figure 6 for rat575 with weight changes), affecting the mean comparisons [17].
Therefore, the quantile Q0.50, that defines the median of the distribution, may be a more
adequate choice to measure the average performance of ACO algorithms than the mean
values shown in Section 4.2. This effect is demonstrated when comparing the mean results
of ACO algorithms in Table 1 (and Table 2) with the corresponding median results in
Table 3 (and Table 4). Specifically, it can be observed that the comparisons of the DTSP with
weight changes are consistent, whereas the comparisons of the DTSP with node changes
have several inconsistencies as follows. P-ACO has better mean values than MMAS
in most DTSP cases of pr1002, whileMMAS has better median values than P-ACO on
the same DTSP cases. The difference regarding the distribution of P-ACO andMMAS
can be observed in Figure 7, in which P-ACO has a more symmetrical and concentrated
distribution thanMMAS.

From the quantile comparisons in Tables 3 and 4, it can also be observed that: first,
the peak performances of both ACO algorithms are better, as expected, than the average
performance or bad-case performance, and second, the average performance (i.e., Q0.50)
comparisons in Table 4 for the DTSP with weight changes are consistent with the peak
(i.e., Q0.10) and bad-case (i.e., Q0.90) performance comparisons sinceMMAS outperforms
P-ACO in all cases. In contrast, when comparing the average performance results with
the peak performance results for the DTSP with node changes in Table 3, there are some
inconsistencies. For example,MMAS has a better peak performance than P-ACO on the
pr1002 test cases, whereas P-ACO has a better average performance thanMMAS on the
same test cases.

In summary,MMAS may be a better choice for DTSP with weight changes when
the independent execution is performed in parallel. This is because it has a better peak
performance than P-ACO, and hence, it is expected to obtain a solution at least as good
as Q0.10. In contrast, P-ACO may be a better choice when a single execution is performed
because there are more chances in obtaining a solution as good as Q0.50.

5. Conclusions

In this work, two ACO variations are applied to optimization problems in a dynamic
environment. The TSP is used as the base problem to systematically generate dynamic test
cases. Two types of dynamic changes are considered: (1) when nodes change and (2) when
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weights change. From the experiments, the follow concluding remarks can be drawn. First,
P-ACO performs significantly better than MMAS in most DTSPs with node changes.
Second,MMAS is significantly better than P-ACO in DTSP with weight changes. Third,
P-ACO has better average performance thanMMAS in most DTSP with node changes.
Fourth,MMAS has a better peak performance in most DTSPs with weight changes.

In general, complex problems arising in practical applications, such as training a neural
network, require huge computational power. As a consequence, the computation power for
optimizing complex problems as well as performing several independent executions (due
to the stochastic nature of swarm and evolutionary computation algorithms) in parallel
may not be available. Therefore, optimization algorithms with better average performances
may be the best choice rather than optimization algorithms with better peak performance.

For future work, it will be interesting to apply and evaluate ACO algorithms in more
practical applications, such as the agile earth observation satellites’ scheduling problem [36,37].
In fact, this particular problem can be solved as a constrained TSP [38] and consists of several
unexpected environmental changes that may affect the scheduled tasks [39,40]. Hence, the adap-
tation capabilities and evaluation of the ACO demonstrated in this work may be suitable to
address the aforementioned problem.
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