Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/30870
Τίτλος: Memory-based immigrants for ant colony optimization in changing environments
Συγγραφείς: Mavrovouniotis, Michalis 
Yang, Shengxiang 
Major Field of Science: Natural Sciences
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: Evolutionary algorithms;Traffic congestion;Traveling salesman problem;Traffic congestion;Traveling
Ημερομηνία Έκδοσης: 16-Μαΐ-2011
Πηγή: EvoCOMPLEX, EvoGAMES, EvoIASP, EvoINTELLIGENCE, EvoNUM, and EvoSTOC, EvoApplications 2011, 27 - 29 April 2011
Volume: 6624 LNCS
Issue: PART 1
Conference: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 
Περίληψη: Ant colony optimization (ACO) algorithms have proved that they can adapt to dynamic optimization problems (DOPs) when they are enhanced to maintain diversity. DOPs are important due to their similarities to many real-world applications. Several approaches have been integrated with ACO to improve their performance in DOPs, where memory-based approaches and immigrants schemes have shown good results on different variations of the dynamic travelling salesman problem (DTSP). In this paper, we consider a novel variation of DTSP where traffic jams occur in a cyclic pattern. This means that old environments will re-appear in the future. A hybrid method that combines memory and immigrants schemes is proposed into ACO to address this kind of DTSPs. The memory-based approach is useful to directly move the population to promising areas in the new environment by using solutions stored in the memory. The immigrants scheme is useful to maintain the diversity within the population. The experimental results based on different test cases of the DTSP show that the memory-based immigrants scheme enhances the performance of ACO in cyclic dynamic environments. © 2011 Springer-Verlag.
URI: https://hdl.handle.net/20.500.14279/30870
ISBN: 9783642205248
ISSN: 03029743
DOI: 10.1007/978-3-642-20525-5_33
Rights: © Springer-Verlag
Type: Conference Papers
Affiliation: University of Leicester 
Brunel University London 
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 20

27
checked on 14 Μαρ 2024

Page view(s)

92
Last Week
0
Last month
7
checked on 22 Δεκ 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα